【題目】把下列各式因式分解
(1)4a2﹣16
(2)(x2+4)2﹣16x2

【答案】
(1)解:原式=4(a2﹣4)=4(a+2)(a﹣2);
(2)解:原式=(x2+4+4x)(x2+4﹣4x)=(x﹣2)2(x+2)2
【解析】(1)原式提取4,再利用平方差公式分解即可;(2)原式利用平方差公式及完全平方公式分解即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為確保廣大居民家庭基本用水需求的同時鼓勵家庭節(jié)約用水,對居民家庭每戶每月用水量采用分檔遞增收費(fèi)的方式,每戶每月用水量不超過基本用水量的部分享受基本價格,超出基本用水量的部分實(shí)行超價收費(fèi).為對基本用水量進(jìn)行決策,隨機(jī)抽查戶居民家庭每戶每月用水量的數(shù)據(jù),整理繪制出下面的統(tǒng)計(jì)表:

(1)為確保%的居民家庭每戶每月的基本用水量需求,那么每戶每月的基本用水量最低應(yīng)確定為多少立方米?

(2)若將(1)中確定的基本用水量及其以內(nèi)的部分按每立方米元交費(fèi),超過基本用水量的部分按每立方米元交費(fèi).設(shè)表示每戶每月用水量(單位:),表示每戶每月應(yīng)交水費(fèi)(單位:元),求的函數(shù)關(guān)系式;

(3)某戶家庭每月交水費(fèi)是元,請按以上收費(fèi)方式計(jì)算該家庭當(dāng)月用水量是多少立方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P (3, 2),點(diǎn)Q(3, 2),點(diǎn)R(3, 2),點(diǎn)H(3, 2),下面選項(xiàng)中關(guān)于y軸對稱的是( ).

A. PQ B. PH C. QR D. PR

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)

如圖,點(diǎn)E是ABC的內(nèi)心,AE的延長線交BC于點(diǎn)F,交ABC的外接圓O于點(diǎn)D;連接BD,過點(diǎn)D作直線DM,使BDM=DAC.

(1)求證:直線DM是O的切線;

(2)求證:DE2=DF·DA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC沿直線AB翻折后得到△ABC1 , 再將△ABC繞點(diǎn)A旋轉(zhuǎn)后得到△AB2C2 , 對于下列兩個結(jié)論:
①“△ABC1能繞一點(diǎn)旋轉(zhuǎn)后與△AB2C2重合”;
②“△ABC1能沿一直線翻折后與△AB2C2重合”的正確性是(
A.結(jié)論①、②都正確
B.結(jié)論①、②都錯誤
C.結(jié)論①正確、②錯誤
D.結(jié)論①錯誤、②正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,BC=AC=4,M為AB中點(diǎn),D是射線BC上的一動點(diǎn),連接AD,將線段AD繞點(diǎn)A逆時針旋轉(zhuǎn)90°得到線段AE,連接ED、ME,點(diǎn)D在運(yùn)動過程中ME的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個問題:探究同一坐標(biāo)系中系數(shù)互為倒數(shù)的正、反比例函數(shù)的圖象性質(zhì).小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù),當(dāng)k>0時的圖象性質(zhì)進(jìn)行了探究,下面是小明的探究過程:

(1)如圖所示,設(shè)函數(shù)圖像的交點(diǎn)為A,B.已知A的坐標(biāo)為(-k,-1),則B點(diǎn)的坐標(biāo)為 .

(2)若P點(diǎn)為第一象限內(nèi)雙曲線上不同于點(diǎn)B的任意一點(diǎn).

設(shè)直線PA交x軸于點(diǎn)M,直線PB交x軸于點(diǎn)N.求證:PM=PN.

證明過程如下:設(shè)P(m,),直線PA的解析式為y=ax+b(a≠0).

解得

所以,直線PA的解析式為

請把上面的解答過程補(bǔ)充完整,并完成剩余的證明.

當(dāng)P點(diǎn)坐標(biāo)為(1,k)(k≠1)時,判斷ΔPAB的形狀,并用k表示出ΔPAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若(x﹣2)(x+3)=x2+mx+n,則mn=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:點(diǎn)PABC內(nèi)部或邊上的點(diǎn)(頂點(diǎn)除外),在PAB,PBCPCA中,若至少有一個三角形與ABC相似,則稱點(diǎn)PABC的自相似點(diǎn).

例如:圖1點(diǎn)PABC的內(nèi)部,PBC=APCB=ABC,BCP∽△ABC,故點(diǎn)PABC的自相似點(diǎn).

請你運(yùn)用所學(xué)知識,結(jié)合上述材料,解決下列問題:

在平面直角坐標(biāo)系中,點(diǎn)M曲線C上的任意一點(diǎn),點(diǎn)Nx軸正半軸上的任意一點(diǎn).

(1) 如圖2,點(diǎn)P是OM上一點(diǎn),ONP=M, 試說明點(diǎn)P是MON的自相似點(diǎn); 當(dāng)點(diǎn)M的坐標(biāo)是點(diǎn)N的坐標(biāo)是時,求點(diǎn)P 的坐標(biāo);

(2) 如圖3,當(dāng)點(diǎn)M的坐標(biāo)是,點(diǎn)N的坐標(biāo)是時,求MON的自相似點(diǎn)的坐標(biāo);

(3) 是否存在點(diǎn)M和點(diǎn)N,使MON無自相似點(diǎn),?若存在,請直接寫出這兩點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案