【題目】如圖1,△ABC是等邊三角形,點(diǎn)D是BC上一點(diǎn),點(diǎn)E在CA的延長(zhǎng)線上,連結(jié)EB、ED,且EB=ED.
(1)求證:∠DEC=∠ABE;
(2)點(diǎn)D關(guān)于直線EC的對(duì)稱點(diǎn)為M,連接EM、BM:
①依題意將圖2補(bǔ)全;
②求證:EB=BM.
【答案】(1)證明見(jiàn)解析;(2)①作圖見(jiàn)解析;②證明見(jiàn)解析.
【解析】
(1)根據(jù)等邊三角形的性質(zhì)得到∠ABC=∠ACB=∠BAC=60°,再根據(jù)等邊對(duì)等角以及三角形外角的性質(zhì)即可得出結(jié)論;
(2)①根據(jù)題意作出圖形即可;
②由軸對(duì)稱的性質(zhì)得到:DE=EM,DG=GM,再根據(jù)等腰三角形三線合一的性質(zhì)得到∠2=∠1.由(1)的結(jié)論即可得到∠1=∠3.再證明△BEM是等邊三角形即可得出結(jié)論.
(1)∵△ABC是等邊三角形,∴∠ABC=∠ACB=∠BAC=60°.
∵BE=DE,∴∠EBD=∠EDB,∴∠EBA+∠ABC=∠CED+∠C,∴∠EBA =∠CED,即∠DEC=∠ABE;
(2)①作圖如下:
②∵D、M關(guān)于直線AC對(duì)稱,∴DE=EM,DG=GM,∴∠2=∠1.由(1)得:∠2=∠3,∴∠1=∠3.
∵BE=DE,∴BE=ME.
∵∠3+∠BEA=∠BAC=60°,∴∠1+∠BEA=60°,∴∠BEM=60°.
∵BE=ME,∴△BEM是等邊三角形,∴EB=BM.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,作OD∥BC與過(guò)點(diǎn)A的切線交于點(diǎn)D,連接DC并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若AE=6,CE=2 ,求線段CE、BE與劣弧BC所圍成的圖形面積.(結(jié)果保留根號(hào)和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從邊長(zhǎng)為a的正方形中剪掉一個(gè)邊長(zhǎng)為b的正方形(如圖),然后將剩余部分拼成一個(gè)長(zhǎng)方形(如圖).
(1)上述操作能驗(yàn)證的等式是 ;(請(qǐng)選擇正確的一個(gè))
A.a2-2ab+b2=(a-b)2 B.a2-b2=(a+b)(a-b) C.a2+ab=a(a+b)
(2)應(yīng)用你從(1)選出的等式,完成下列各題:
①已知x2-4y2=12,x+2y=4,求x-2y的值.
②計(jì)算:(1-)(1-)(1-)…(1-)(1-).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,則∠DAE等于( )
A.20°
B.25°
C.30°
D.35°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校學(xué)生的身高情況,隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)查.已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制成如下統(tǒng)計(jì)圖表(單位:cm):
A | x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | x≥170 |
根據(jù)圖表提供的信息,樣本中,身高在160≤x<170之間的女生人數(shù)為( )
A. 8 B. 6 C. 14 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分5分)畫圖并填空:
如圖,在方格紙內(nèi)將△ABC經(jīng)過(guò)一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)C的對(duì)應(yīng)點(diǎn)C′.
(1)畫出平移后的△A′B′C′,(利用網(wǎng)格點(diǎn)和三角板畫圖)
(2)畫出AB邊上的高線CD;
(3)畫出BC邊上的中線AE;
(4)在平移過(guò)程中高CD掃過(guò)的面積為 .(網(wǎng)格中,每一小格單位長(zhǎng)度為1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,己知△ABC,任取一點(diǎn)O,連AO,BO,CO,并取它們的中點(diǎn)D,E,F(xiàn),得△DEF,則下列說(shuō)法正確的個(gè)數(shù)是( ) ①△ABC與△DEF是位似圖形; ②△ABC與△DEF是相似圖形;
③△ABC與△DEF的周長(zhǎng)比為1:2;④△ABC與△DEF的面積比為4:1.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明為了測(cè)量一涼亭的高度AB(頂端A到水平地面BD的距離),在涼亭的旁邊放置一個(gè)與涼亭臺(tái)階BC等高的臺(tái)階DE(DE=BC=0.5米,A、B、C三點(diǎn)共線),把一面鏡子水平放置在平臺(tái)上的點(diǎn)G處,測(cè)得CG=15米,然后沿直線CG后退到點(diǎn)E處,這時(shí)恰好在鏡子里看到?jīng)鐾さ捻敹薃,測(cè)得EG=3米,小明身高1.6米,則涼亭的高度AB約為( )
A.8.5米
B.9米
C.9.5米
D.10米
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com