【題目】如圖,在平面直角坐標(biāo)系中,線段OA與線段OA關(guān)于直線lyx對(duì)稱.已知點(diǎn)A的坐標(biāo)為(21),則點(diǎn)A的坐標(biāo)為_____

【答案】12

【解析】

如圖,過(guò)點(diǎn)AACx軸于點(diǎn)C,過(guò)點(diǎn)AACy軸于點(diǎn)C,連接AA交直線l于點(diǎn)D,根據(jù)線段OA與線段OA關(guān)于直線lyx對(duì)稱得出∠AOD=∠AOD,OAOA,進(jìn)而求出ACO≌△ACO,即可得出點(diǎn)A的坐標(biāo).

解:如圖,過(guò)點(diǎn)AACx軸于點(diǎn)C,過(guò)點(diǎn)AACy軸于點(diǎn)C,連接AA交直線l于點(diǎn)D,

∵線段OA與線段OA關(guān)于直線lyx對(duì)稱,

∴△ODA≌△ODA,∠COD=∠DOC,

∴∠AOD=∠AOD,OAOA,

∴在△ACO和△ACO中,

,

∴△ACO≌△ACO

ACAC,COOC

∵點(diǎn)A的坐標(biāo)為(2,1),

∴點(diǎn)A的坐標(biāo)為(1,2),

故答案為:(1,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)的坐標(biāo)為,且,拋物線圖象經(jīng)過(guò)三點(diǎn).

1)求兩點(diǎn)的坐標(biāo);

2)求拋物線的解析式;

3)若點(diǎn)是直線下方的拋物線上的一個(gè)動(dòng)點(diǎn),作于點(diǎn),當(dāng)的值最大時(shí),求此時(shí)點(diǎn)的坐標(biāo)及的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題10分)如圖,在平面直角坐標(biāo)系xOy中,直線y軸交于點(diǎn)C,與x軸交于點(diǎn)B,拋物線經(jīng)過(guò)BC兩點(diǎn),與x軸的正半軸交于另一點(diǎn)A,且OA OC="2" 7

1)求拋物線的解析式;

2)點(diǎn)D為線段CB上,點(diǎn)P在對(duì)稱軸的右側(cè)拋物線上,PD=PB,當(dāng)tan∠PDB=2,求P點(diǎn)的坐標(biāo);

3)在(2)的條件下,點(diǎn)Q7,m)在第四象限內(nèi),點(diǎn)R在對(duì)稱軸的右側(cè)拋物線上,若以點(diǎn)P、D、Q、R為頂點(diǎn)的四邊形為平行四邊形,求點(diǎn)Q、R的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線yx2x軸交于點(diǎn)A,以OA為斜邊在x軸的上方作等腰直角三角形OAB,將△OAB沿x軸向右平移,當(dāng)點(diǎn)B落在直線yx2上時(shí),則線段AB在平移過(guò)程中掃過(guò)部分的圖形面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(探究證明)(1)某班數(shù)學(xué)課題學(xué)習(xí)小組對(duì)矩形內(nèi)兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關(guān)系進(jìn)行探究,提出下列問題,請(qǐng)你給出證明:

如圖,在矩形ABCD中,EFGH,EF分別交ADBC于點(diǎn)EF,GH分別交AB、DC于點(diǎn)G、H,求證:

(結(jié)論應(yīng)用)(2)如圖,將矩形ABCD沿EF折疊,使得點(diǎn)B和點(diǎn)D重合,若AB2BC3.求折痕EF的長(zhǎng);

(拓展運(yùn)用)(3)如圖,將矩形ABCD沿EF折疊.使得點(diǎn)D落在AB邊上的點(diǎn)G處,點(diǎn)C落在點(diǎn)P處,得到四邊形EFPG,若AB2BC3EF,請(qǐng)求BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,AB=AC,∠BAC=60°,DBC邊上一點(diǎn),(不與點(diǎn)BC)重合,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到AE,連接EC,則∠ACE的度數(shù)是__________,線段AC,CDCE之間的數(shù)量關(guān)系是_______________.

(2)2,在△ABC中,AB=AC,∠BAC=90°,DBC邊上一點(diǎn)(不與點(diǎn)B、C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,請(qǐng)寫出∠ACE的度數(shù)及線段AD,BDCD之間的數(shù)量關(guān)系,并說(shuō)明理由.

(3)如圖3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若點(diǎn)A滿足AB=AC,∠BAC=90°,請(qǐng)直接寫出線段AD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩地相距 120 千米,小張騎自行車從甲地出發(fā)勻速駛往乙地,出發(fā) a小時(shí)開始休息,1 小時(shí)后仍按原速繼續(xù)行駛.小李比小張晚出發(fā)一段時(shí)間,騎摩托車從乙地勻速駛往甲地,圖中折線 CDDEEF,線段 AB 分別表示小張、小李與乙地的距離 y(千米)與小張出發(fā)時(shí)間 x(小時(shí))之間的函數(shù)關(guān)系圖象.

1)小李到達(dá)甲地后,再經(jīng)過(guò) 小時(shí)小張到達(dá)乙地;小張騎自行車的速度是 千米/時(shí);

2)當(dāng) a4 時(shí),求小張與乙地的距離 y 與小張出發(fā)的時(shí)間 x(小時(shí))之間的函數(shù)關(guān)系式;

3)若小張恰好在休息期間與小李相遇,請(qǐng)直接寫出 a 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲,乙兩輛汽車分別從A,B兩地同時(shí)出發(fā),沿同一條公路相向而行,乙車出發(fā)2h后休息,與甲車相遇后,繼續(xù)行駛.設(shè)甲,乙兩車與B地的路程分別為y(km)y (km),行駛的時(shí)間為x(h),y,yx之間的函數(shù)圖象如圖所示,結(jié)合圖象解答下列問題:

1)乙車休息了多長(zhǎng)時(shí)間;

2)求乙車與甲車相遇后yx的函數(shù)解析式,并寫出自變量x的取值范圍;

3)當(dāng)兩車相距40km時(shí),求出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABOC中,AB2,∠A60°,菱形的一個(gè)頂點(diǎn)C在反比例函數(shù)yk≠0)的圖象上,則反比例函數(shù)的解析式為(

A.yB.yC.yD.y

查看答案和解析>>

同步練習(xí)冊(cè)答案