【題目】如圖,在四邊形ABCD中,AD//BC,E在BC的延長線,聯(lián)結(jié)AE分別交BD、CD于點(diǎn)G、F,且.
(1)求證:AB//CD;
(2)若,BG=GE,求證:四邊形ABCD是菱形.
【答案】(1)證明見解析(2)證明見解析
【解析】試題分析:
(1)由AD∥BC易得,結(jié)合可得,由此即可得到AB∥CD;
(2)結(jié)合已知和(1)中結(jié)論易得四邊形ABCD是平行四邊形,由此可得BC=AD,結(jié)合BC2=GD·BD可得,結(jié)合∠ADG=∠BDA可得△ADG∽△BDA,從而可得∠DAG=∠ABD,在證∠DAG=∠E,∠E=∠DBC,∠ABD=∠BDC即可得到∠BDC=∠DBC,從而可得BC=CD結(jié)合四邊形ABCD是平行四邊形即可得到結(jié)論了.
試題解析:
(1)∵AD∥BC,
∴,
∵,
∴,
∴AB∥CD;
(2)∵AD∥BC,AB∥CD,
∴四邊形ABCD是平行四邊形,
∴BC=AD,
∵BC2=GD·BD,
∴AD2=GD·BD,即,
又∵∠ADG=∠BDA,
∴△ADG∽△BDA,
∴∠DAG=∠ABD,
∵AB∥CD,
∴∠ABD=∠BDC,
∵AD∥BC,
∴∠DAG=∠E,
∵BG=GE ,
∴∠DBC=∠E,
∴∠BDC=∠DBC,
∴BC=CD ,
∵四邊形ABCD是平行四邊形,
∴平行四邊形ABCD是菱形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的直徑為10,銳角△ABC內(nèi)接于⊙O,BD⊥AC于點(diǎn)D,AB=8,則tan∠CBD的值等于( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,4),則點(diǎn)B4的坐標(biāo)為_____,點(diǎn)B2017的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的有( )
①如果∠A+∠B-∠C=0,那么△ABC是直角三角形; ②如果∠A:∠B:∠C=5:12:13,則△ABC是直角三角形; ③如果三角形三邊之比為,則△ABC為直角三角形;④如果三角形三邊長分別是(n>2),則△ABC是直角三角形;
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)三角形有一條邊上的高等于這條邊的一半,那么我們把這個(gè)三角形叫做半高三角形.已知直角三角形是半高三角形,且斜邊,則它的周長等于_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于霧霾天氣持續(xù)籠罩某地區(qū),口罩市場出現(xiàn)熱賣.某商店用8000元購進(jìn)甲、乙兩種口罩,銷售完后共獲利2800元,其進(jìn)價(jià)和售價(jià)如下表:
甲種口罩 | 乙種口罩 | |
進(jìn)價(jià)(元/袋) | 20 | 25 |
售價(jià)(元/袋) | 26 | 35 |
(1)求該商店購進(jìn)甲、乙兩種口罩各多少袋?
(2)該商店第二次仍以原價(jià)購進(jìn)甲、乙兩種口罩,購進(jìn)乙種口罩袋數(shù)不變,而購進(jìn)甲種口罩袋數(shù)是第一次的2倍,甲種口罩按原售價(jià)出售,而乙種口罩讓利銷售.若兩種口罩銷售完畢,要使第二次銷售活動獲利不少于3680元,則乙種口罩最低售價(jià)為每袋多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E、F是正方形ABCD的邊AD上有兩個(gè)動點(diǎn),滿足AE=DF,連接CF交BD于G,連接BE交AG于點(diǎn)H,若正方形的邊長為3,則線段DH長度的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別為A(-3,2),B(-4,-3),C(-1,-1)。
(1)寫出△ABC關(guān)于x軸對稱的△A1B1C1 的各頂點(diǎn)坐標(biāo);
(2)畫出△ABC關(guān)于y軸對稱的△A2B2C2;
(3)求△A2B2C2的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,是直線兩側(cè)的點(diǎn),以為圓心,長為半徑畫弧交于,兩點(diǎn),又分別以,為圓心,大于的長為半徑畫弧,兩弧交于點(diǎn)D,連接,,下列結(jié)論不一定正確的是( )
A.B.點(diǎn),關(guān)于直線對稱
C.點(diǎn),關(guān)于直線對稱D.平分
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com