【題目】如圖,某校綜合實踐社團,計劃利用長的柵欄材料,一邊靠原有舊墻圍成如圖所示的兩個矩形試驗田,墻的長度為.

1)能否圍成總面積為的試驗田?若能,求出的長度;若不能,說明理由;

2)能否圍成總面積為的試驗田?說說你的理由.

【答案】1)能圍成總面積為的試驗田,此時的長為.

2)不能圍成總面積為的試驗田,理由見解析.

【解析】

1)設ADx米,然后表示出AB的長,利用矩形的面積公式列出方程求解即可;

2)同理列出方程,若有實根,則可以,否則就不可以.

解:(1)設的長為,則的長為,

由題意得:,

整理得:

解得:,,

時,,符合題意;

時,,不符合題意,舍去,

答:能圍成總面積為的試驗田,此時的長為;

2)不能圍成總面積為的試驗田,

理由:設的長為,則的長為

由題意得:,整理得:,

,,,

∴原方程無實數(shù)解,即不能圍成總面積為的試驗田.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】剪紙是中國傳統(tǒng)的民間藝術,它畫面精美,風格獨特,深受大家喜愛,現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為金魚,另外一張卡片的正面圖案為蝴蝶,卡片除正面剪紙圖案不同外,其余均相同.將這三張卡片背面向上洗勻從中隨機抽取一張,記錄圖案后放回,重新洗勻后再從中隨機抽取一張.請用畫樹狀圖(或列表)的方法,求抽出的兩張卡片上的圖案都是金魚的概率.(圖案為金魚的兩張卡片分別記為A1、A2,圖案為蝴蝶的卡片記為B)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)和反比例函數(shù)

1)如圖1,若,且函數(shù)、的圖象都經(jīng)過點

①求,的值;

②直接寫出當的范圍;

2)如圖2,過點軸的平行線與函數(shù)的圖象相交于點,與反比例函數(shù)的圖象相交于點

①若,直線與函數(shù)的圖象相交點.當點、、中的一點到另外兩點的距離相等時,求的值;

②過點軸的平行線與函數(shù)的圖象相交于點.當的值取不大于1的任意實數(shù)時,點、間的距離與點、間的距離之和始終是一個定值.求此時的值及定值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋里裝有分別標有漢字、、的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.

(1)若從中任取一個球,求摸出球上的漢字剛好是的概率;

(2)甲從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表法,求甲取出的兩個球上的漢字恰能組成美麗光明的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,三角形的內(nèi)心是三條角平分線的交點,過三角形內(nèi)心的一條直線與兩邊相交,兩交點之間的線段把這個三角形分成兩個圖形.若有一個圖形與原三角形相似,則把這條線段叫做這個三角形的“內(nèi)似線”.

(1)等邊三角形“內(nèi)似線”的條數(shù)為   ;

(2)如圖,ABC中,AB=AC,點D在AC上,且BD=BC=AD,求證:BD是ABC的“內(nèi)似線”;

(3)在RtABC中,C=90°,AC=4,BC=3,E、F分別在邊AC、BC上,且EF是ABC的“內(nèi)似線”,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線,過點和點,與y軸交于點C,連接ACx軸于點D,連接OA,OB

求拋物線的函數(shù)表達式;

求點D的坐標;

的大小是______;

繞點O旋轉,旋轉后點C的對應點是點,點D的對應點是點,直線與直線交于點M,在旋轉過程中,當點M與點重合時,請直接寫出點MAB的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD中,AB16AD10,sinA,點MAB邊上一動點,過點MMNAB,交AD邊于點N,將∠A沿直線MN翻折,點A落在線段AB上的點E處,當△CDE為直角三角形時,AM的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若m是正數(shù),直線ly=-my軸交于點A;直線ayx+my軸交于點B;拋物線Ly x2+mx的頂點為C,且Lx軸左交點為D

1)若AB12,求m的值,此時在拋物線的對稱軸上存在一點P使得△的周長最小,求點P坐標;

2)當點C在直線l上方時,求點C與直線l距離的最大值;

3)在拋物線L和直線a所圍成的封閉圖形的邊界上,把橫、縱坐標都是整數(shù)的點稱為美點,分別直接寫出m2020m2020.5美點的個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x軸交于A、B兩點(點A在點B左側),與y軸交于點C

1)求出△ABC的周長.

2)在直線BC上方有一點Q,連接QC、QB,當△QBC面積最大時,一動點PQ出發(fā),沿適當路徑到達y軸上的M點,再沿與對稱軸垂直的方向到達對稱軸上的N點,連接BN,求QM+MN+BN的最小值.

3)在直線BC上找點G,K是平面內(nèi)一點,在平面內(nèi)是否存在點G,使以O、CG、K為頂點的四邊形是菱形?若存在,求出K的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案