【題目】如圖,拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)x=2,頂點(diǎn)A的縱坐標(biāo)為1,點(diǎn)B(4,0)在此拋物線(xiàn)上.

(1)求此拋物線(xiàn)的解析式;
(2)若此拋物線(xiàn)對(duì)稱(chēng)軸與x軸交點(diǎn)為C,點(diǎn)D(x,y)為拋物線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)D作直線(xiàn)y=2的垂線(xiàn),垂足為E.
①用含y的代數(shù)式表示CD2 , 并猜想CD2與DE2之間的數(shù)量關(guān)系,請(qǐng)給出證明;
②在此拋物線(xiàn)上是否存在點(diǎn)D,使∠EDC=120°?如果存在,請(qǐng)直接寫(xiě)出D點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)

解:依題意,設(shè)拋物線(xiàn)的解析式為:y=a(x﹣2)2+1,代入B(4,0),得:

a(4﹣2)2+1=0,解得:a=﹣

∴拋物線(xiàn)的解析式:y=﹣ (x﹣2)2+1


(2)

解:

①猜想:CD2=DE2;

證明:由D(x,y)、C(2,0)、E(x,2)知:

CD2=(x﹣2)2+y2,DE2=(y﹣2)2;

由(1)知:(x﹣2)2=﹣4(y﹣1)=﹣4y+4,代入CD2中,得:

CD2=y2﹣4y+4=(y﹣2)2=DE2

②由于∠EDC=120°>90°,所以點(diǎn)D必在x軸上方,且拋物線(xiàn)對(duì)稱(chēng)軸左右兩側(cè)各有一個(gè),以左側(cè)為例:

延長(zhǎng)ED交x軸于F,則EF⊥x軸;

在Rt△CDF中,∠FDC=180°﹣120°=60°,∠DCF=30°,則:

CD=2DF、CF= DF;

設(shè)DF=m,則:CF= m、CD=DE=2m;

∵EF=ED+DF=2m+m=2,

∴m= ,DF=m= ,CF= m= ,OF=OC﹣CF=2﹣ ,

∴D(2﹣ );

同理,拋物線(xiàn)對(duì)稱(chēng)軸右側(cè)有:D(2+ , );

綜上,存在符合條件的D點(diǎn),且坐標(biāo)為(2﹣ , )或(2+ , ).


【解析】(1)已知拋物線(xiàn)的頂點(diǎn)坐標(biāo),可以將拋物線(xiàn)的解析式設(shè)為頂點(diǎn)式,再代入B點(diǎn)的坐標(biāo)求解即可.(2)①由坐標(biāo)系兩點(diǎn)間的距離公式不難得到CD2和DE2的表達(dá)式,再將(1)的拋物線(xiàn)解析式代入CD2的表達(dá)式中,用y替換掉x后,比較兩者的大小關(guān)系即可;②∠EDC是鈍角,那么點(diǎn)D一定在x軸的上方,且拋物線(xiàn)對(duì)稱(chēng)軸的左右兩側(cè)各一個(gè)(它們關(guān)于拋物線(xiàn)對(duì)稱(chēng)軸對(duì)稱(chēng)),延長(zhǎng)ED交x軸于F,在Rt△CDF中,∠DCF=30°,那么DC=2DF、CF= DF,設(shè)出DF的長(zhǎng)后,可以表示出CD、DE的長(zhǎng),由EF=ED+DF=2即可得出DF的長(zhǎng),從而求出點(diǎn)D的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班級(jí)從甲乙兩位同學(xué)中選派一人參加“秀美山河”知識(shí)競(jìng)賽,老師對(duì)他們的五次模擬成績(jī)(單位:分)進(jìn)行了整理,美工計(jì)算出甲成績(jī)的平均數(shù)是80,甲乙成績(jī)的方差分別是320,40,但繪制的統(tǒng)計(jì)圖尚不完整.
甲乙兩人模擬成績(jī)統(tǒng)計(jì)表

根據(jù)以上信息,請(qǐng)你解答下列問(wèn)題:
(1)a=;
(2)請(qǐng)完成圖中表示甲成績(jī)變化情況的折線(xiàn);
(3)求乙成績(jī)的平均數(shù);
(4)從平均數(shù)和方差的角度分析,誰(shuí)將被選中.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的面積是16,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,點(diǎn)M1、N1、P1分別為線(xiàn)段OD、DC、CO的中點(diǎn),順次連接M1N1、N1 P1、P1M1得到第一個(gè)△P1M1N1 , 面積為S1 , 分別取M1N1、N1P1、P1M1三邊的中點(diǎn)P2、M2、N2 , 得到第二個(gè)△P2M2N2 , 面積記為S2 , 如此繼續(xù)下去得到第n個(gè)△PnMnNn , 面積記為Sn , 則Sn﹣Sn1= . (用含n的代數(shù)式表示,n≥2,n為整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小梅將邊長(zhǎng)分別為,,,長(zhǎng)的若干個(gè)正方形按一定規(guī)律拼成不同的長(zhǎng)方形,如圖所示.

求第四個(gè)長(zhǎng)方形的周長(zhǎng);

當(dāng)時(shí),求第五個(gè)長(zhǎng)方形的面積.(用科學(xué)記數(shù)法表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:直線(xiàn)與雙曲線(xiàn)交于A.B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4, 若雙曲線(xiàn)上一點(diǎn)C的縱坐標(biāo)為8,連接AC.

(1)填空: k的值為_______; 點(diǎn)B的坐標(biāo)為___________;點(diǎn)C的坐標(biāo)為___________.

(2)直接寫(xiě)出關(guān)于的不等式的解集.

(3)求三角形AOC的面積

(4) 若在x軸上有點(diǎn)M,y軸上有點(diǎn)N,且點(diǎn)M.N.A.C四點(diǎn)恰好構(gòu)成平行四邊形,直接寫(xiě)出點(diǎn)M.N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A是雙曲線(xiàn)y= 在第二象限分支上的任意一點(diǎn),點(diǎn)B、點(diǎn)C、點(diǎn)D分別是點(diǎn)A關(guān)于x軸、坐標(biāo)原點(diǎn)、y軸的對(duì)稱(chēng)點(diǎn).若四邊形ABCD的面積是8,則k的值為( )

A.﹣1
B.1
C.2
D.﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度)

(1)畫(huà)出△ABC向下平移4個(gè)單位得到的△A1B1C1 , 并直接寫(xiě)出C1點(diǎn)的坐標(biāo);
(2)以點(diǎn)B為位似中心,在網(wǎng)格中畫(huà)出△A2BC2 , 使△A2BC2與△ABC位似,且位似比為2:1,并直接寫(xiě)出C2點(diǎn)的坐標(biāo)及△A2BC2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,點(diǎn)OAC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線(xiàn)MN∥BC,設(shè)MN交∠BCA的平分線(xiàn)于點(diǎn)E,交∠BCA的外角平分線(xiàn)于點(diǎn)F.

(1)判斷OEOF的大小關(guān)系?并說(shuō)明理由?

(2)當(dāng)點(diǎn)O運(yùn)動(dòng)何處時(shí),四邊形AECF是矩形?并說(shuō)出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C、D分別為EA、EB的中點(diǎn),∠E=30°,∠1=110°,則∠2的度數(shù)為( )

A.80°
B.90°
C.100°
D.110°

查看答案和解析>>

同步練習(xí)冊(cè)答案