【題目】寫(xiě)出兩個(gè)無(wú)理數(shù),使得它們的和為有理數(shù),則這兩個(gè)無(wú)理數(shù)可以為①_____;②_____.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo),點(diǎn)的坐標(biāo),點(diǎn)的坐標(biāo),點(diǎn)的坐標(biāo),如圖①,另有一點(diǎn)從點(diǎn)出發(fā),沿著運(yùn)動(dòng),到點(diǎn)停止.
()當(dāng)在上時(shí), __________.
()點(diǎn)在運(yùn)動(dòng)過(guò)程中,直接寫(xiě)出可以和形成等腰三角形的點(diǎn)的坐標(biāo).
()將圖①中的長(zhǎng)方形在坐標(biāo)平面內(nèi)繞原點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn),如圖②,求出此時(shí)點(diǎn)、、的坐標(biāo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在等邊三角形ABC中.D是AB邊上的動(dòng)點(diǎn),以CD為一邊,向上作等邊三角形EDC.連接AE.
(l)求證:△DBC≌△EAC
(2)試說(shuō)明AE∥BC的理由.
(3)如圖②,當(dāng)圖①中動(dòng)點(diǎn)D運(yùn)動(dòng)到邊BA的延長(zhǎng)線上時(shí),所作仍為等邊三角形,猜想是否仍有AE∥BC?若成立請(qǐng)證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,O是AC與BD的交點(diǎn),過(guò)O點(diǎn)的直線EF與AB,CD的延長(zhǎng)線分別交于E,F.
(1)求證:△BOE≌△DOF;
(2)當(dāng)EF與AC滿足什么關(guān)系時(shí),以A,E,C,F為頂點(diǎn)的四邊形是菱形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在等邊三角形△ABC中,AQ=PQ,PR=PS,PR⊥AB 于R,PS⊥AC于S,下列說(shuō)法:①點(diǎn)P在∠BAC的平分線上;②AS=AR;③QP∥AR; ④△BRP≌△QSP.其中結(jié)論正確的是 _______________.(只填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD為△ABC的角平分線,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,連接EF交AD于點(diǎn)O.(1)求證:AD垂直平分EF;
(2)若∠BAC=,寫(xiě)出DO與AD之間的數(shù)量關(guān)系,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列乘法中,能運(yùn)用完全平方公式進(jìn)行運(yùn)算的是( )
A.(x+a)(x-a)B.(b+m)(m-b)
C.(-x-b)(x-b)D.(a+b)(-a-b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)如圖,一艘輪船以15海里/時(shí)的速度,由南向北航行,在A出測(cè)得小島P在北偏西方向上,兩小時(shí)后,輪船在B處測(cè)得小島P在北偏西30°方向上.在小島周?chē)?8海里內(nèi)有暗礁,若輪船
不改變方向仍繼續(xù)向前航行,問(wèn):有無(wú)觸礁的危險(xiǎn)?說(shuō)明你的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com