【題目】如圖1,在△ABC中,∠BAC90°ABAC,DBC邊上一點(diǎn)(不與點(diǎn)BC重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC.

(1)如圖1,通過圖形旋轉(zhuǎn)的性質(zhì)可知AD_____,∠DAE_____.

(解決問題)

(2)如圖1,證明BCDC+EC;

(拓展延伸)

如圖2,在△ABC中,∠BAC90°,ABAC,D為△ABC外一點(diǎn),且∠ADC45°,仍將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,ED.

(3)AD6,CD3,求BD的長(zhǎng).

【答案】(1)AE90;(2)證明見解析;(3)BD=9.

【解析】

(1)利用旋轉(zhuǎn)變換的性質(zhì)即可解決問題;(2)證明△ABD≌△ACE(SAS),推出BDCE,可得結(jié)論;(3)如圖2中,連BD.證明△ABD≌△ACE(SAS),推出BDCE,再證明△ECD是直角三角形,利用勾股定理即可解決問題.

解:

(1)由旋轉(zhuǎn)的性質(zhì)可知:ADAE,∠DAE90°.

故答案為AE90.

(2)如圖1中,

∵∠DAE=∠BAC

∴∠BAD=∠CAE,

又∵ABAC,ADAE

∴△ABD≌△ACE(SAS),

BDCE,

BCBD+DCEC+CD.

(3)如圖2中,連BD.

∵∠BAC=∠DAE,

BAD=∠CAE,

又∵ABAC,ADAE

∴△ABD≌△ACE(SAS),

BDCE

而∠ADE=∠ADC45°,

∴△ECD為直角三角形,

EC2CD2+ED2CD2+2AD281

EC9,即:BD的長(zhǎng)為9.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)yx24的圖象與x軸交于點(diǎn)AB(點(diǎn)A位于點(diǎn)B的左側(cè)),C為頂點(diǎn).一次函數(shù)ymx+2的圖象經(jīng)過點(diǎn)A,與y軸交于點(diǎn)D

1)求直線AD的函數(shù)表達(dá)式;

2)平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點(diǎn)為C.若新拋物線的頂點(diǎn)和原拋物線的頂點(diǎn)的連線CC平行于直線AD,且當(dāng)1≤x≤3時(shí),新拋物線對(duì)應(yīng)的函數(shù)值有最小值為﹣1,求新拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;

3)如圖,連接AC、BC,在坐標(biāo)平面內(nèi),直接寫出使得ACDEBC相似(其中點(diǎn)A與點(diǎn)E是對(duì)應(yīng)點(diǎn))的點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷售的某種商品每件的標(biāo)價(jià)是元,若按標(biāo)價(jià)的八折銷售,仍可盈利,此時(shí)該種商品每星期可賣出件,市場(chǎng)調(diào)查發(fā)現(xiàn):在八折銷售的基礎(chǔ)上,該種商品每降價(jià)元,每星期可多賣件.設(shè)每件商品降價(jià)元(為整數(shù)),每星期的利潤(rùn)為

1)求該種商品每件的進(jìn)價(jià)為多少元?

2)當(dāng)售價(jià)為多少時(shí),每星期的利潤(rùn)最大?最大利潤(rùn)是多少?

320192月該種商品每星期的售價(jià)均為每件元,若20192月的利潤(rùn)不低于元,請(qǐng)求出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線C1yax+225的頂點(diǎn)為P,與x軸相較于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),且點(diǎn)B的坐標(biāo)為(10

1)求拋物線C1的函數(shù)解析式;

2)如圖,拋物線C2與拋物線C1關(guān)于x軸對(duì)稱,將拋物線C2向右平移,平移后的拋物線記為C3,拋物線C3的頂點(diǎn)為M,當(dāng)點(diǎn)P,M關(guān)于點(diǎn)O成中心對(duì)稱時(shí).①求點(diǎn)M的坐標(biāo);②求拋物線C3的解析式;

3)在(2)的條件下,設(shè)拋物線C3x軸的正半軸交于點(diǎn)D,在直線PD的上方的拋物線C3上,是否存在點(diǎn)Q使得PDQ的面積最大?若存在,求出當(dāng)點(diǎn)Q的橫坐標(biāo)為何值時(shí)PDQ面積最大,若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,水面下降2m,水面寬度增加______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)分別為,

1)畫出關(guān)于點(diǎn)O成中心對(duì)稱的;

2)以點(diǎn)A為位似中心,將放大為原來(lái)的2倍,得到,請(qǐng)?jiān)诘诙笙迌?nèi)畫出;

3)直接寫出以點(diǎn),為頂點(diǎn),以為一邊的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BC8cm,點(diǎn)D是線段BC上的一點(diǎn),分別以BD、CD為邊在BC的同側(cè)作等邊三角形ABD和等邊三角形CDEAC、BE相交于點(diǎn)P,則點(diǎn)D從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C時(shí),點(diǎn)P的運(yùn)動(dòng)路徑長(zhǎng)(含與點(diǎn)B、C重合)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)關(guān)于的反比例函數(shù)。

1)求的值;

2)函數(shù)圖象在哪些象限?在每個(gè)象限內(nèi),的增大而怎樣變化?

3)當(dāng)時(shí),求的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題9分)如圖,的直徑,上一點(diǎn),連接.過點(diǎn)的切線,交的延長(zhǎng)線于點(diǎn),在上取一點(diǎn),使,連接,交于點(diǎn).請(qǐng)補(bǔ)全圖形并解決下面的問題:

1)求證:;

2)如果,,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案