代數(shù)式與多項式的差與字母的值無關,

的值。

解:-(

 =

  =

∵ 與字母的值無關

= -9-3-3+2

                        = -13

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•鹽都區(qū)一模)問題提出
我們在分析解決某些數(shù)學問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大。
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應用
(1)已知:多項式M=2a2-a+1,N=a2-2a.試比較M與N的大小.
(2)已知:如圖2,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a<b<c,現(xiàn)將△ABC 補成長方形,使得△ABC的兩個頂
點為長方形的兩個端點,第三個頂點落在長方形的這一邊的對邊上.
①這樣的長方形可以畫
3
3
個;
②所畫的長方形中哪個周長最。繛槭裁?
拓展延伸
已知:如圖3,銳角△ABC(其中BC為a,AC為b,AB為c)三邊滿足a<b<c,畫其BC邊上的內(nèi)接正方形EFGH,使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知多項式x2+ax-y+b和bx2-3x+6y-3的差的值與字母x的取值無關,求代數(shù)式3(a2-2ab-b2)-(4a2+ab+b2)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

代數(shù)式化簡求值
(1)化簡求值:若(x+2)2+|y+3|+(z-1)2=0,求3x2y-{xyz-(2xyz-x2z)-4x2z+[3x2y-(4xyz-5x2z-3xyz)]}的值.
(2)代數(shù)式2x2+ax-y+6與多項式2bx2-3x+5y-1的差與字母x的值無關,求
1
3
a3-3b2-(
1
9
a3-2b2)
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

求多項式x2-3x-1與多項式2x2-4x+5的差,并求當x=-1時代數(shù)式的值.

查看答案和解析>>

同步練習冊答案