【題目】如圖,四邊形ABCD中,AB=CD,對(duì)角線AC,BD相交于點(diǎn)O,AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F,連接AF,CE,若DE=BF,則下列結(jié)論:①CF=AE;②OE=OF;③四邊形ABCD是平行四邊形;④圖中共有四對(duì)全等三角形.其中正確結(jié)論的個(gè)數(shù)是
A.4 B.3 C.2 D.1
【答案】B
【解析】
試題∵DE=BF,∴DF=BE。
∵在Rt△DCF和Rt△BAE中,CD=AB,DF=BE,∴Rt△DCF≌Rt△BAE(HL)。
∴FC=EA。故①正確。
∵AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F,∴AE∥FC。
∵FC=EA,∴四邊形CFAE是平行四邊形。
∴EO=FO。故②正確。
∵Rt△DCF≌Rt△BAE,∴∠CDF=∠ABE。∴CD∥AB。
∵CD=AB,∴四邊形ABCD是平行四邊形。故③正確。
由上可得:△CDF≌△BAE,△CDO≌△BAO,△CDE≌△BAF,△CFO≌△AEO,△CEO≌△AFO,△ADF≌△CBE等。故④圖中共有6對(duì)全等三角形錯(cuò)誤。
故正確的有3個(gè)。故選B。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,直線MN交⊙O于A,B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.
(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位,每個(gè)小方格的頂點(diǎn)叫格點(diǎn).
(1)畫出△ABC向左平移2個(gè)單位,再向上平移3個(gè)單位后得到的△A1B1C1;
(2)圖中AC與A1C1的關(guān)系是: ;
(3)畫出△ABC中BC邊上的中線AD;
(4)△ACD的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)袋子中裝有大小完全相同的3粒乒乓球,其中2粒白色,1粒黃色.請(qǐng)你用它為甲、乙兩位同學(xué)設(shè)計(jì)一個(gè)能決定勝負(fù)的公平的摸球游戲規(guī)則.并說明公平的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD的外側(cè),作等邊三角形ADE,連接BE,CE.
(1)求證:BE=CE.
(2)求∠BEC的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分別交AB、BC于點(diǎn)D、E,AP平分∠BAC,與DE的延長(zhǎng)線交于點(diǎn)P.
(1)求PD的長(zhǎng)度;
(2)連結(jié)PC,求PC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】市場(chǎng)上甲種商品的采購(gòu)價(jià)為60元/件,乙種商品的采購(gòu)價(jià)為100元/件,某商店需要采購(gòu)甲、乙兩種商品共15件,且乙種商品的件數(shù)不少于甲種商品件數(shù)的2倍.設(shè)購(gòu)買甲種商品件(>0),購(gòu)買兩種商品共花費(fèi)元.
(1)求出與的函數(shù)關(guān)系式(寫出自變量的取值范圍);
(2)試?yán)煤瘮?shù)的性質(zhì)說明,當(dāng)采購(gòu)多少件甲種商品時(shí),所需要的費(fèi)用最少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com