【題目】1、圖2分別是的網(wǎng)格,網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)均為1,、兩點(diǎn)在小正方形的頂點(diǎn)上,請(qǐng)?jiān)趫D1、圖2中各取一點(diǎn)(點(diǎn)必須在小正方形的頂點(diǎn)上),使以、為頂點(diǎn)的三角形分別滿足以下要求:

1)在圖1中畫一個(gè),使是以為斜邊的直角三角形,且;

2)在圖2中畫一個(gè),使為等腰三角形,且,直接寫出的長(zhǎng)度.

【答案】1)畫圖見(jiàn)解析;(2)畫圖見(jiàn)解析;AC的長(zhǎng)度為

【解析】

1是以為斜邊的直角三角形,,則AC=2BC,利用勾股定理求得BC,AC的長(zhǎng)度,然后利用格點(diǎn)的特點(diǎn)找點(diǎn)C;

2為等腰三角形,且,則AB為三角形的腰,則BC=5,結(jié)合勾股定理和格點(diǎn)的特征確定點(diǎn)C的位置,然后利用勾股定理求AC的長(zhǎng)度.

解:(1)∵是以為斜邊的直角三角形,,則AC=2BC

∴在RtABC中,

解得

又∵

∴如圖1,RtABC即為所求;

2為等腰三角形,且,則AB為三角形的腰,

BC=5

∴如圖2,等腰三角形ABC1和等腰三角形ABC2即為所求

此時(shí)

AC的長(zhǎng)度為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),將點(diǎn)向右平移6個(gè)單位,得到點(diǎn)

(1)直接寫出點(diǎn)的坐標(biāo);

(2)若拋物線經(jīng)過(guò)點(diǎn),,求該拋物線的表達(dá)式;

(3)若拋物線的頂點(diǎn)在直線上移動(dòng),當(dāng)拋物線與線段有且只有一個(gè)公共點(diǎn)時(shí),求拋物線頂點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,AB=BC=5,tanABC=

(1)求邊AC的長(zhǎng);

(2)設(shè)邊BC的垂直平分線與邊AB的交點(diǎn)為D,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“不出城郭而獲山水之怡,身居鬧市而有林泉之致”,合肥市某區(qū)不斷推進(jìn)“園林城市”建設(shè),今春種植了四類花苗,園林部門從種植的這批花苗中隨機(jī)抽取了2000株,將四類花苗的種植株數(shù)繪制成扇形統(tǒng)計(jì)圖,將四類花苗的成活株數(shù)繪制成條形統(tǒng)圖.經(jīng)統(tǒng)計(jì)這批2000株的花苗總成活率為90%,其中玉蘭和月季的成活率較高,根據(jù)圖表中的信息解答下列問(wèn)題:

(1)扇形統(tǒng)計(jì)圖中玉蘭所對(duì)的圓心角為 ,并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)該區(qū)今年共種植月季8000株,成活了約 株;

(3)園林部門決定明年從這四類花苗中選兩類種植,請(qǐng)用列表法或畫樹狀圖求恰好選到成活率較高的兩類花苗的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市購(gòu)進(jìn)某種水果的成本為20/kg,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),這種水果在未來(lái)40天的銷售單價(jià)p(元/kg)與時(shí)間 t(天)之間的函數(shù)表達(dá)式為pt+30;(1≤t≤40t為整數(shù)),試銷售當(dāng)天(正式銷售前一天)售出400kg,之后每天銷售量比前一天減少5千克;

1)試求每天銷售利潤(rùn)W1(元)與時(shí)間t(天)之間的函數(shù)關(guān)系式;

2)在銷售前20天里,何時(shí)利潤(rùn)為4320元?

3)為回饋新老顧客的支持,在實(shí)際銷售中,超市決定每銷售1kg水果就捐贈(zèng)2元利潤(rùn)給精準(zhǔn)扶貧對(duì)象.在日銷售量不低于300kg的情況下,何時(shí)超市獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(t,y1),B(t+2,y2)在拋物線y=﹣x2的圖象上,且﹣2≤t≤2,則線段AB長(zhǎng)的最大值______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, ABCD中,EFCDBD于點(diǎn)G,∠ECF=DGF,DG=CE,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小李經(jīng)營(yíng)一個(gè)社區(qū)快遞網(wǎng)點(diǎn),負(fù)責(zé)周邊快件收發(fā),由于疫情原因,到2020212 日網(wǎng)點(diǎn)才可以復(fù)工,而該網(wǎng)點(diǎn)的另外兩名員工因?yàn)檗k理復(fù)工手續(xù),將分別在215日和226日返崗,工作據(jù)大數(shù)據(jù)顯示,預(yù)計(jì)從復(fù)工之日開(kāi)始,每日到達(dá)該網(wǎng)點(diǎn)的快件數(shù)量()與第(212日為第)滿足:.已知一位快遞員日均派送快件量為件,通過(guò)加班最高可派送件.

前三天小李派送的快件總量為_ 件;

以最高派送量派送快件還有剩余時(shí),則當(dāng)天剩余快件留到第二天優(yōu)先派送,

①到第十天結(jié)束時(shí),滯留的快件共有 件; 到第十四天結(jié)束時(shí),滯留的快件共有__件;

218日后快遞激增爆倉(cāng),小李和員工每天加班派送,根據(jù)現(xiàn)有快遞數(shù)量的變化趨勢(shì),從219日開(kāi)始計(jì)算,小李至少要加班幾天才可以不用加班派送.(即小李不加班派送的情況下,快遞點(diǎn)沒(méi)有滯留件)

到了35日,全國(guó)疫情穩(wěn)定,預(yù)計(jì)每日到達(dá)網(wǎng)點(diǎn)的快件數(shù)量將按新趨勢(shì)變化,女神節(jié)期間(36-9)日均快件量為件,310日起日均快件量穩(wěn)定在件.此時(shí)小李接到快遞總公司新規(guī)定:從310日開(kāi)始,到達(dá)的快件必須當(dāng)天派送完畢,否則將扣除滯留快件滯留費(fèi)/件天(之前滯留的快件從3100時(shí)開(kāi)始收取滯留費(fèi))為此,小李想到從市場(chǎng)招聘____名臨時(shí)工幫助派送快遞,若臨時(shí)工基本工資/天,外加派送費(fèi)/件臨時(shí)工一天最多可派送快件件,為了將支出降到最低,小李應(yīng)該聘請(qǐng)臨時(shí)工幾天,派送快件共多少件?此時(shí)最低支出多少元錢?直接寫出你的答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1.已知⊙Mx軸交于AB兩點(diǎn),與y軸交于CD兩點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)分別為﹣17,弦AB的弦心距MN3,

1)求⊙M的半徑;

2)如圖2,P在弦CD上,且CP2,Q是弧BC上一動(dòng)點(diǎn),PQ交直徑CF于點(diǎn)E,當(dāng)∠CPQ=∠CQD時(shí),

①判斷線段PQ與直徑CF的位置關(guān)系,并說(shuō)明理由;

②求CQ的長(zhǎng);

3)如圖3.若P點(diǎn)是弦CD上一動(dòng)點(diǎn),Q是弧BC上一動(dòng)點(diǎn),PQ交直徑CF于點(diǎn)E,當(dāng)∠CPQ與∠CQD互余時(shí),求△PEM面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案