【題目】如圖,拋物線C1:y=-x2+2x的頂點為A,與x軸的正半軸交于點B.

(1)將拋物線C1上的點的橫坐標和縱坐標都擴大到原來的2倍,求變換后得到的拋物線的表達式;

(2)將拋物線C1上的點(x,y)變?yōu)?kx,ky)(|k|>1),變換后得到的拋物線記作C2,拋物線C2的頂點為C,求拋物線C2的表達式(用k表示);

(3)在(2)條件下,點P在拋物線C2上,滿足S△PAC=S△ABC,且∠ACP=90°.當(dāng)k>1時,求k的值.

【答案】(1)y=-x2+2x;(2) y=-x2+2x;(3) k=

【解析】(1)由拋物線C1解析式求出A、B及原點坐標,將三點坐標都擴大到原來的2,利用待定系數(shù)法求解可得;
(2)(1)同理,利用待定系數(shù)法可得拋物線C2的解析式;
(3)求出頂點C的坐標,根據(jù) SPAC=SABCBP∥AC,繼而可得△ABO是邊長為2的正三角形,四邊形CEBP是矩形,表示出點P的坐標,將其代入到拋物線C2解析式可求得k的值.

解:(1)∵y=-x2+2x=- (x-1)2,

拋物線C1經(jīng)過原點O,點A(1,)和點B(2,0)三點,

將拋物線C1上的點的橫坐標和縱坐標都擴大到原來的2倍,

變換后的拋物線經(jīng)過原點O,(2,2)(4,0)三點.

設(shè)變換后拋物線的表達式為y=ax2+bx,將(2,2)(4,0)代入,

,解得.

變換后拋物線的表達式為y=-x2+2x;

(2)∵拋物線C1經(jīng)過原點O,點A(1,)和點B(2,0)三點,

將拋物線C1上的點(x,y)變?yōu)?/span>(kx,ky)(|k|>1),變換后得到的拋物線記作C2,則拋物線C2過原點O,(k,k),(2k,0)三點,

拋物線C2的表達式為y=-x2+2x;

(3)∵y=-x2+2x=- (x-k)2k,

∴O,A,C三點共線,且頂點C(k, k).

如答圖,∵SPAC=SABC,k>1,∴BP∥AC,

過點PPD⊥x軸于D,過點BBE⊥AOE.

由題意知△ABO是邊長為2的正三角形,四邊形CEBP是矩形

∴OE=1,CE=BP=2k-1,∵∠PBD=60°,

∴BD=k-,PD= (2k-1),

∴P,

(2k-1)=-,解得k=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=1,AD=,AF平分DAB,過C點作CEBD于E,延長AF、EC交于點H,下列結(jié)論中:AF=FH;②B0=BF;③CA=CH;BE=3ED;正確的個數(shù)為( )

(A)1個 (B)2個 (C)3個 (D)4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校美術(shù)組要去商店購買鉛筆和橡皮,若購買60支鉛筆和30塊橡皮,則需按零售價購買,共支付30元;若購買90支鉛筆和60塊橡皮,則可按批發(fā)價購買,共支付40.5元.已知每支鉛筆的批發(fā)價比零售價低0.05元,每塊橡皮的批發(fā)價比零售價低0.10元.

1)求每支鉛筆和每塊橡皮的批發(fā)價各是多少元?

2)小亮同學(xué)用4元錢在這家商店按零售價買同樣的鉛筆和橡皮(兩樣都要買,4元錢恰好用完),共有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.

其中正確結(jié)論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】旅游公司在景區(qū)內(nèi)配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內(nèi)最多只能出租一次,且每輛車的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營運規(guī)律如下:當(dāng)x不超過100元時,觀光車能全部租出;當(dāng)x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.

1)優(yōu)惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應(yīng)為多少元?(注:凈收入=租車收入管理費)

2)當(dāng)每輛車的日租金為多少元時,每天的凈收入最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P從(0,3)出發(fā),沿所示的方向運動,每當(dāng)碰到矩形的邊時反彈,反彈時反射角等于入射角,當(dāng)點p2019次碰到矩形的邊時點P的坐標為(  )

A. 1,4 B. 5,0 C. 8,3 D. 64

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O為△ABC的內(nèi)切圓,切點分別為D,E,F(xiàn),∠C=90°,BC=3,AC=4.

(1)求△ABC的面積;

(2)求⊙O的半徑;

(3)求AF的長.

查看答案和解析>>

同步練習(xí)冊答案