【題目】某校九年級(jí)學(xué)習(xí)小組在探究學(xué)習(xí)過(guò)程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖

(1)所示位置放置放置,現(xiàn)將RtAEF繞A點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點(diǎn)M,AC與EF交于點(diǎn)N,BC與EF交于點(diǎn)P.

(1)求證:AM=AN;

(2)當(dāng)旋轉(zhuǎn)角α=30°時(shí),四邊形ABPF是什么樣的特殊四邊形?并說(shuō)明理由.

【答案】解:(1)證明:用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖(1)所示位置放置放置,現(xiàn)將RtAEF繞A點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)角α(0°<α<90°),

AB=AF,BAM=FAN。

ABM和AFN中,,

∴△ABM≌△AFN(ASA)。

AM=AN。

(2)當(dāng)旋轉(zhuǎn)角α=30°時(shí),四邊形ABPF是菱形。理由如下:

連接AP,

∵∠α=30°,∴∠FAN=30°。∴∠FAB=120°。

∵∠B=60°,AFBP。∴∠F=FPC=60°。

∴∠FPC=B=60°。ABFP。

四邊形ABPF是平行四邊形。

AB=AF,平行四邊形ABPF是菱形。

解析(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得出AB=AF,BAM=FAN,進(jìn)而得出ABM≌△AFN得出答案即可。

(2)利用旋轉(zhuǎn)的性質(zhì)得出FAB=120°,FPC=B=60°,即可得出四邊形ABPF是平行四邊形,再利用菱形的判定得出答案。 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)習(xí)了《展開(kāi)與折疊》這一課后,明白了很多幾何體都能展開(kāi)成平面圖形.于是他在家用剪刀展開(kāi)了一個(gè)長(zhǎng)方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識(shí),回答下列問(wèn)題:

(1)小明總共剪開(kāi)了_______條棱.

(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過(guò)折疊以后,仍然可以還原成一個(gè)長(zhǎng)方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請(qǐng)你幫助小明在①上補(bǔ)全.

(3)小明說(shuō):他所剪的所有棱中,最長(zhǎng)的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個(gè)長(zhǎng)方體紙盒的底面是一個(gè)正方形,并且這個(gè)長(zhǎng)方體紙盒所有棱長(zhǎng)的和是880cm,求這個(gè)長(zhǎng)方體紙盒的體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一幅長(zhǎng)20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設(shè)豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2

(1)求y與x之間的函數(shù)關(guān)系式;

(2)若圖案中三條彩條所占面積是圖案面積的,求橫、豎彩條的寬度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)80°得到△OCD,點(diǎn)A與點(diǎn)C是對(duì)應(yīng)點(diǎn).

(1)畫(huà)出△OAB關(guān)于點(diǎn)O對(duì)稱(chēng)的圖形(保留畫(huà)圖痕跡,不寫(xiě)畫(huà)法);

(2)若∠A=110°,∠D=40°,求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱(chēng)為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=x2﹣6x﹣16,AB為半圓的直徑,則這個(gè)“果圓”被y軸截得的線段CD的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A是反比例函數(shù)y=(x>0)的圖象上的一個(gè)動(dòng)點(diǎn),連接OA,OB⊥OA,且OB=2OA,那么經(jīng)過(guò)點(diǎn)B的反比例函數(shù)圖象的表達(dá)式為( 。

A. y=﹣ B. y= C. y=﹣ D. y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+x+2x軸交于A,B兩點(diǎn)(AB的左側(cè)),與y軸交于點(diǎn)C,P為此拋物線對(duì)稱(chēng)軸l上任意一點(diǎn),則APC的周長(zhǎng)的最小值是( 。

A. 2 B. 3 C. 5 D. +

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的對(duì)稱(chēng)軸是x=﹣1,且過(guò)點(diǎn)(,0).有下列結(jié)論:①abc>0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正確的結(jié)論是_____(填寫(xiě)正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=ax2+bx+a+ba≠0)的圖象可能是()

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案