【題目】如圖,四邊形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,BC=5,CF=3,BF=4.求證:DE∥FC.
【答案】證明:延長BF交DE于H,
∵四邊形ABCD是正方形,
∴∠BCD=90°,BC=CD,
∴∠BCF+∠FCD=90°,
∵△ECF是等腰直角三角形,CF=CE,
∴∠ECD+∠FCD=90°,
∴∠BCF=∠ECD.
在△BCF和△DCE中,
,
∴△BCF≌△DCE(SAS),
延長BF交DE于H,
∴BF=DE,∠CBF=∠CDE,
∵∠CBF+∠1=90°,∠1=∠2,
∴∠2+∠CDE=90°,
∴∠DHF=90°,
∴BF⊥DE,
在△BFC中,BC=5,CF=3,∠BFC=90°,
∴BF= =4.
∵△BCF≌△DCE,
∴DE=BF=4,∠BFC=∠DEC=∠FCE=90°.
∴DE∥FC.
【解析】首先由四邊形ABCD是正方形,△ECF是等腰直角三角形,易得BC=DC,∠BCF=∠ECD,又由CE=CF,利用SAS即可證得△BCF≌△DCE,再延長BF交DE于H,由△BCF≌△DCE,根據(jù)全等三角形的對應(yīng)邊相等,即可得BF=DE,又由全等三角形的對應(yīng)角相等,易求得∠CDE+∠2=90°,則可得BF⊥DE,再根據(jù)由BC=5,CF=3,∠BFC=90°,利用勾股定理即可求得BF的長,又由△BCF≌△DCE,即可得DE的長,∠BFC=∠DEC=∠FCE=90°,進(jìn)而證明DE∥FC.
【考點精析】根據(jù)題目的已知條件,利用勾股定理的逆定理和正方形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握如果三角形的三邊長a、b、c有下面關(guān)系:a2+b2=c2,那么這個三角形是直角三角形;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中B(3,2),BC⊥y軸于C,BA⊥x軸于A,點E在線段AB上從B向A以每秒1個單位的速度運動,運動時間為t秒(0<t<2).將BE沿BD折疊,使E點恰好落在BC上的F處.
(1)如圖1,若E為AB的中點,請直接寫出F、D兩點的坐標(biāo):F( , ) D( , )
(2)如圖1,連接CD,在(1)的條件下,求證:CD=FD.
(3)如圖2,在E點運動的同時,M點在OC上從C向O運動,N點在OA上從A向O運動,M的運動速度為每秒3個單位,N的運動速度為每秒a個單位.在運動過程中,△CMF能與△ANE全等嗎?若能,求出此時a與t的值,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,點E、F分別為長方形紙帶ABCD的邊AD、BC上的點,∠DEF=19°,將紙帶沿EF折疊成圖②(G為ED和EF的交點,再沿BF折疊成圖③(H為EF和DG的交點),則圖③中∠DHF=°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列算式,計算正確的有( ) ①10﹣3=0.0001; ②(0.0001)0=1; ③3a﹣2= ; ④(﹣2)3÷(﹣2)5=﹣2﹣2 .
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中, AC=6, BC=4.
(1)用直尺和圓規(guī)作∠ACB的角平分線CD,交AB于點D;
(保留作圖痕跡,不要求寫作法和證明)
(2)在(1)所作的圖形中,若△ACD的面積為3,求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式:
13=12
13+23=32
13+23+33=62
13+23+33+43=102
…
猜想13+23+33+…+103= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com