【題目】如圖,在等邊△ABC中,M是邊BC延長(zhǎng)線上一點(diǎn),連接AM交△ABC的外接圓于點(diǎn)D,延長(zhǎng)BD至N,使得BN=AM,連接CN、MN,
(1)求證:△CMN是等邊三角形;
(2)判斷CN與⊙O的位置關(guān)系,并說(shuō)明理由;
(3)若AD:AB=3:4,BN=4,求等邊△ABC的邊長(zhǎng).
【答案】
(1)證明:△CMN是等邊三角形,
理由:在△BCN與△ACM中, ,
∴△BCN≌△ACM,
∴CN=CM,∠BCN=∠ACM,
∴∠BCN﹣∠ACN=∠ACM﹣∠ACN,
即∠MCN=∠ACB=60°,
∴△CMN是等邊三角形
(2)解:連接OA.OB.OC,
在△BOC與△AOC中, ,
∴△BOC≌△AOC,
∴∠ACO=∠BCO= ACB=30°,
∵∠ACB=∠MCN=60°,
∴∠ACN=60°,
∴∠OCN=90°,
∴OC⊥CN,
∴CN是⊙O的切線
(3)解:∵∠ADB=∠ACB=60°,
∴∠ADB=∠ABC,
∵∠BAD=∠MAB,
∴△ABD∽△AMB,
∴ = ,
∵AM=BN=4,
∴AB=3.
∴等邊△ABC的邊長(zhǎng)是3.
【解析】(1)利用邊角邊定理判定出三角形△BCN≌△ACM,再由三角形全等的性質(zhì)得CN=CM,∠BCN=∠ACM,從而找到∠MCN=∠ACB=60°得到結(jié)論;(2)先由邊邊邊得出△BOC≌△AOC,再由三角形全等的性質(zhì)得∠ACO= 30°,由平角的定義得∠ACN=60°,進(jìn)而∠OCN=90°得出CN是⊙O的切線;(3)由同弧所對(duì)的圓周角相等得∠ADB=∠ACB,進(jìn)而得∠ADB=∠ABC從而△ABD∽△AMB,由相似三角形的性質(zhì)得 = 得到AB的長(zhǎng)度,最終得出等邊△ABC的邊長(zhǎng)。
【考點(diǎn)精析】關(guān)于本題考查的圓周角定理和直線與圓的三種位置關(guān)系,需要了解頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半;直線與圓有三種位置關(guān)系:無(wú)公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一塊直角三角形的紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于( ).
A. 2 cm B. 4 cm C. 3 cm D. 5 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,點(diǎn)E,F分別在邊AB與CD上,點(diǎn)G、H在對(duì)角線AC上,AG=CH,BE=DF.
(1)求證:四邊形EGFH是平行四邊形;
(2)若EG=EH,AB=8,BC=4.求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明袋子中有1個(gè)紅球和3個(gè)白球,這些球除顏色外都相同.
(1)從袋中任意摸出2個(gè)球,用樹(shù)狀圖或列表求摸出的2個(gè)球顏色不同的概率;
(2)在袋子中再放入x個(gè)白球后,進(jìn)行如下實(shí)驗(yàn):從袋中隨機(jī)摸出1個(gè)球,記錄下顏色后放回袋子中并攪勻.經(jīng)大量試驗(yàn),發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.95左右,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是8m,寬是2m,拋物線的最高點(diǎn)到路面的距離為6米.
(1)按如圖所示建立平面直角坐標(biāo)系,求表示該拋物線的函數(shù)表達(dá)式;
(2)一輛貨運(yùn)卡車高為4m,寬為2m,如果該隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過(guò)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分8分)某商家預(yù)測(cè)一種應(yīng)季襯衫能暢銷市場(chǎng),就用13200元購(gòu)進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求.商家又用28800元購(gòu)進(jìn)了第二批這種襯衫,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)量的2倍,但單價(jià)貴了10元.
(1)該商家購(gòu)進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價(jià)銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤(rùn)率不低于25%(不考慮其它因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=8,點(diǎn)D是邊BC上一動(dòng)點(diǎn)(不與B,C重合),E是AC上一個(gè)動(dòng)點(diǎn),始終保持∠ADE=∠B,則當(dāng)△DCE為直角三角形時(shí),BD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,點(diǎn)P是三角形內(nèi)的任意一點(diǎn),PD∥AB,PE∥BC,PF∥AC,若△ABC的周長(zhǎng)為12,則PD+PE+PF=( )
A.8B.6C.4D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面的圖表是我國(guó)數(shù)學(xué)家發(fā)明的“楊輝三角”,此圖揭示了(n為非負(fù)整數(shù))的展開(kāi)式的項(xiàng)數(shù)及各項(xiàng)系數(shù)的有關(guān)規(guī)律.請(qǐng)你觀察,并根據(jù)此規(guī)律寫(xiě)出:_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com