【題目】甲,乙兩人同時(shí)各接受了600個(gè)零件的加工任務(wù),甲比乙每分鐘加工的數(shù)量多,兩人同時(shí)開(kāi)始加工,加工過(guò)程中其中一人因故障停止加工幾分鐘后又繼續(xù)按原速加工,直到他們完成任務(wù),如圖表示甲比乙多加工的零件數(shù)量(個(gè))與加工時(shí)間(分)之間的函數(shù)關(guān)系,觀察圖象解決下列問(wèn)題:
(1)點(diǎn)B的坐標(biāo)是________,B點(diǎn)表示的實(shí)際意義是___________ _____;
(2)求線段BC對(duì)應(yīng)的函數(shù)關(guān)系式和D點(diǎn)坐標(biāo);
(3)乙在加工的過(guò)程中,多少分鐘時(shí)比甲少加工100個(gè)零件?
(4)為了使乙能與甲同時(shí)完成任務(wù),現(xiàn)讓丙幫乙加工,直到完成.丙每分鐘能加工3個(gè)零件,并把丙加工的零件數(shù)記在乙的名下,問(wèn)丙應(yīng)在第多少分鐘時(shí)開(kāi)始幫助乙?并在圖中用虛線畫(huà)出丙幫助后y與x之間的函數(shù)關(guān)系的圖象.
【答案】(1)B(15,0),甲乙兩人工作15分鐘時(shí),加工零件的數(shù)量相同
(2)y=2x-30,D(150,0)(3)65分鐘或125分鐘(4)第45分鐘
【解析】試題分析:(1)觀察圖象即可得出點(diǎn)B的坐標(biāo),然后根據(jù)縱坐標(biāo)的意義可知此時(shí)兩人加工的零件數(shù)量相同;
(2)利用待定系數(shù)法即可得BC對(duì)應(yīng)的函數(shù)關(guān)系式,根據(jù)圖象可知105分鐘時(shí)甲完成任務(wù),甲實(shí)際用了100分鐘完成任務(wù),從而得到甲的速度,繼而知道乙的速度,從而得出點(diǎn)D坐標(biāo);
(3)求出CD段的解析式,分別所y=100代入BC、CD段解析式即可得;
(4)設(shè)丙應(yīng)該在x分鐘時(shí)加入,根據(jù)等量關(guān)系:乙x分鐘加工的數(shù)量+乙、丙(105-x)分鐘加工的數(shù)量=600,解方程即可得,然后補(bǔ)全圖象即可.
試題解析:(1)由圖象可知B(15,0),根據(jù)縱軸表示甲比乙多加工的零件數(shù)量可知此時(shí)甲、乙加工的零件數(shù)量相同,
故答案為:(15,0),甲乙兩人工作15分鐘時(shí),加工零件的數(shù)量相同;
(2)設(shè)直線BC的解析式為:y=kx+b,由題意則有
,解得: ,所以BC段的函數(shù)關(guān)系式為:y=2x-30,
由圖象可知105分鐘時(shí)甲完成了任務(wù),甲中間休息了5分鐘,105-5=100,
600÷100=6,6-2=4,600÷4=150,所以D(150,0);
(3)把y=100代入y=2x-30,得:100=2x-30,解得:x=65,
設(shè)直線CD的解析式為:y=ax+e,由題意則有
,解得: ,所以BC的函數(shù)關(guān)系式為:y=-4x+600,
當(dāng)y=100時(shí),有100=-4x+600,解得:x=125,
所以乙在加工的過(guò)程中,65或125分鐘時(shí)比甲少加工100個(gè)零件;
(4)設(shè)x分鐘時(shí)丙加入,則有:4x+(4+3)(105-x)=600,解得:x=45,
即:丙在45分鐘時(shí)開(kāi)始幫助乙,
圖象如圖所示:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長(zhǎng)線和∠DCK的角平分線CF的反向延長(zhǎng)線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=( 。
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l1∥l2,l3、l4和l1、l2分別交于點(diǎn)A、B、C、D,點(diǎn)P在直線l3或l4上且不與點(diǎn)A、B、C、D重合.記∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.
(1)若點(diǎn)P在圖(1)位置時(shí),求證:∠3=∠1+∠2;
(2)著點(diǎn)P在圖(2)位置時(shí),請(qǐng)寫(xiě)出∠1、∠2、∠3之間的關(guān)系,并說(shuō)明理由;
(3)若點(diǎn)P在圖(3)位置時(shí),寫(xiě)出∠1、∠2、∠3之間的關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB∥CD,C在D的右側(cè),BE平分∠ABC,DE平分∠ADC,BE、DE所在直線交于點(diǎn)E,∠ADC=70°.
(1)求∠EDC的度數(shù);
(2)若∠ABC=n°,求∠BED的度數(shù)(用含n的代數(shù)式表示);
(3)將線段BC沿DC方向平移,使得點(diǎn)B在點(diǎn)A的右側(cè),其他條件不變,畫(huà)出圖形并判斷∠BED的度數(shù)是否改變,若改變,求出它的度數(shù)(用含n的式子表示);若不改變,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB的一邊OA為平面鏡,∠AOB=37°36′,在OB上有一點(diǎn)E,從E點(diǎn)射出一束光線經(jīng)OA上一點(diǎn)D反射,反射光線DC恰好與OB平行,入射角∠ODE與反射角∠ADC相等,則∠DEB的度數(shù)是( )
A. 75°36′ B. 75°12′ C. 74°36′ D. 74°12′
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=2x-5與x軸和y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C(1,n)在直線AB上,點(diǎn)D在y軸的負(fù)半軸上,且CD=.
(1)求點(diǎn)C、點(diǎn)D的坐標(biāo).
(2)若P為y軸上的點(diǎn),當(dāng)△PCD為等腰三角形時(shí),求點(diǎn)P的坐標(biāo).
(3)若點(diǎn)M為x軸上一動(dòng)點(diǎn)(點(diǎn)M不與點(diǎn)O重合),N為直線y=2x-5上一動(dòng)點(diǎn),是否存在點(diǎn)M、N,使得△AMN與△AOB全等?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)D是AB的中點(diǎn),點(diǎn)E在DC的延長(zhǎng)線上,且CE=CD,過(guò)點(diǎn)B作BF∥DE交AE的延長(zhǎng)線于點(diǎn)F,交AC的延長(zhǎng)線于點(diǎn)G.
(1)求證:AB=BG;
(2)若點(diǎn)P是直線BG上的一點(diǎn),試確定點(diǎn)P的位置,使△BCP與△BCD相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=1,BC=,在AC邊上截取AD=BC,連接BD.
(1)通過(guò)計(jì)算,判斷AD2與ACCD的大小關(guān)系;
(2)求∠ABD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知小紅的成績(jī)?nèi)缦卤恚?/span>
文化成績(jī) | 綜合素 質(zhì)成績(jī) | 總成績(jī) | |||
測(cè)驗(yàn)1 | 測(cè)驗(yàn)2 | 測(cè)驗(yàn)3 | |||
小紅 | 560分 | 580分 | 630分 | 12 |
(1)小紅的這三次文化測(cè)試成績(jī)的平均分是_____分;
(2)用(1)中的平均分加上綜合素質(zhì)成績(jī)就是小紅的總成績(jī).用同樣的方法計(jì)算出小紅所在班級(jí)全部同學(xué)的總成績(jī)并繪制出了如圖所示的頻數(shù)分布直方圖.那么小紅所在班級(jí)共有_____名同學(xué);
(3)學(xué)校將根據(jù)總成績(jī)由高到低保送小紅所在班級(jí)前15名同學(xué)進(jìn)入高中學(xué)習(xí),請(qǐng)問(wèn)小紅能被保送嗎?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com