【題目】如圖,∠1+∠2+∠3+∠4+∠5+∠6=度.
【答案】360
【解析】解:如圖,根據(jù)三角形中內(nèi)角和為180°,
有∠HGT=180°﹣(∠1+∠2),∠GHT=180°﹣(∠5+∠6),∠GTH=180°﹣(∠3+∠4),
∴∠HGT+∠GHT+∠GTH=540°﹣(∠1+∠2+∠3+∠4+∠5+∠6),
∵∠HGT+∠GHT+∠GTH=180°,
∴180°=540°﹣(∠1+∠2+∠3+∠4+∠5+∠6),
∴∠1+∠2+∠3+∠4+∠5+∠6=360°.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角形的內(nèi)角和外角的相關(guān)知識,掌握三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線c1: 沿x軸翻折,得到拋物線c2,如圖1所示.
(1)請直接寫出拋物線c2的表達(dá)式;
(2)現(xiàn)將拋物線c1向左平移m個(gè)單位長度,平移后得到新拋物線的頂點(diǎn)為M,與x軸的交點(diǎn)從左到右依次為A、B;將拋物線c2向右也平移m個(gè)單位長度,平移后得到新拋物線的頂點(diǎn)為N,與軸的交點(diǎn)從左到右依次為D、E.
①當(dāng)B、D是線段AE的三等分點(diǎn)時(shí),求m的值;
②在平移過程中,是否存在以點(diǎn)A、N、E、M為頂點(diǎn)的四邊形是矩形的情形?若存在,請求出此時(shí)m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,把△ABC經(jīng)過平移得到△A′B′C′,若A(1,m),B(4,2),點(diǎn)A的對應(yīng)點(diǎn)A′(3,m+2),則點(diǎn)B對應(yīng)點(diǎn)B′的標(biāo)為( )
A.(6,5)
B.(6,4)
C.(5,m)
D.(6,m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年4月10日,武漢馬拉松吸引了來自世界各地36個(gè)國家和地區(qū)的2萬名專業(yè)和業(yè)余選手同場競技.最終肯尼亞選手麥約和埃塞俄比亞選手雷加薩分別摘得男女全程組冠軍.馬拉松全程約為42000米,則42000用科學(xué)記數(shù)法可表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是 ( )
A. 變量 x , y 滿足 x + 3y = 1 ,則 y 是 x 的函數(shù)
B. 變量 x , y 滿足,則 y 是 x 的函數(shù)
C. 變量 x , y 滿足∣ y ∣= x ,則 y 是 x 的函數(shù)
D. 變量 x , y 滿足 y2 = x ,則 y 是 x 的函數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA,OB是⊙O的兩條半徑,OA⊥OB,C是半徑OB上一動(dòng)點(diǎn),連結(jié)AC并延長交⊙O于D,過點(diǎn)D作圓的切線交OB的延長線于E,已知OA=8.
(1)求證:∠ECD=∠EDC;
(2)若tanA=,求DE長;
(3)當(dāng)∠A從15°增大到30°的過程中,求弦AD在圓內(nèi)掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=mx與雙曲線y=相交于A、B兩點(diǎn),A點(diǎn)的坐標(biāo)為(1,2)
(1)求反比例函數(shù)的表達(dá)式;
(2)根據(jù)圖象直接寫出當(dāng)mx>時(shí),x的取值范圍;
(3)計(jì)算線段AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,不正確的是( )
(A)0既不是正數(shù),也不是負(fù)數(shù) (B)0不是整數(shù)
(C)0的相反數(shù)是0 (D)0的絕對值是0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于命題“已知:a∥b,b∥c,求證:a∥c”.如果用反證法,應(yīng)先假設(shè)( )
A. a不平行b B. b不平行c C. a⊥c D. a不平行c
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com