如圖,在△ABC中,AB=AC,∠B=50°,⊙A與BC相切于點D,與AB相交于點E,則∠AED=______°.
連接AD,
∵⊙A與BC相切于點D,
∴AD⊥BC,
∵∠B=50°,
∴∠BAD=40°,
∵AE=AD,
∴∠AED=
180°-∠BAD
2
=70°.
故答案為:70.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知PA,PB分別切⊙O于點A、B,∠P=60°,PA=8,那么弦AB的長是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知,如圖,在Rt△ABC中,∠C=90°,以AC為直徑的⊙O交斜邊AB于E,ODAB.求證:①ED是⊙O的切線;②2DE2=BE•OD.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,P是半徑為4的⊙O外一點,PA切⊙O于A,PB切⊙O于B,∠APB=60°.
求:夾在劣弧AB及,PB之間的陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在△ABC中,∠BAC=90°,AB=AC=2
2

(1)如圖1,若以點A為圓心、r為半徑的⊙A與BC相切于點D,求r.
(2)如圖2,若⊙A的半徑r=1,點O在BC上運動(點O與B、C不重合),設BO=x,△AOC的面積為y.①求y關于x的函數(shù)關系式,并寫出x的取值范圍.
②如圖2,以點O為圓心,BO長為半徑作圓,當⊙O與⊙A相切時,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,BC是⊙O直徑,點A為CB延長線上一點,AP切⊙O于點P,若AP=12,AB:BC=4:5,則⊙O的半徑等于( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E是BC的中點,連結(jié)DE.
(1)求證:DE與⊙O相切;
(2)連結(jié)OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,AC是⊙O的切線,A為切點,連接BC交⊙O于點D,若∠C=50°,則∠AOD=______•

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,以AC為直徑的圓分別交AB和BC于E、D兩點,AD與EC交于G點.過點D作DF⊥AB交AB于F,交AC的延長線于H.
(1)求證:FH為⊙O的切線;
(2)若AC=6,BC=4,求DG.

查看答案和解析>>

同步練習冊答案