【題目】對于某一函數(shù)給出如下定義:若存在實數(shù)p,當其自變量為p時,其函數(shù)值等于p,則稱p為這個函數(shù)的不變值,在函數(shù)存在不變值時,該函數(shù)的最大不變值與最小不變值之差q稱為這個函數(shù)的不變長度.特別地,當函數(shù)只有一個不變值時,其不變長度q為零.
(1)判斷函數(shù)y=有沒有不變值?如果有,直接寫出其不變長度.
(2)函數(shù)y=3x2-bx.
①若其不變長度為零,求b的值;
②若2≤b≤5,求其不變長度q的取值范圍.
【答案】(1)不變長度為4;(2)①b=-1;②1≤q≤2.
【解析】
(1)有.由題意得:x=x2,解得:x=0或x=4;當x=0時,y=0,當x=4時,y=4,即可求解;
(2)由題意得:x=3x2-bx,解得:x=0或x=,①即:x=0或x=時,其y值相等,即:0=,故:b=-1;②當b=2時,x=0或x=1,則:不變長度q=1-0=1,當b=5時,x=0或x=2,則q=2,即可求解.
解:(1)有.由題意得:x=x2,解得:x=0或x=4;
當x=0時,y=0,當x=4時,y=4,
故:不變,長度為:4-0=4;
(2)由題意得:x=3x2-bx,解得:x=0或x=,
①即:x=0或x=時,其y值相等,即:0=,
故:b=-1;
②當b=2時,x=0或x=1,
則:不變長度q=1-0=1,
當b=5時,x=0或x=2,則q=2,
故:1≤q≤2.
科目:初中數(shù)學 來源: 題型:
【題目】(問題提出)|a﹣1|+|a﹣2|+|a﹣3|+…+|a﹣2019|最小值是多少?
(閱讀理解)
為了解決這個問題,我們先從最簡單的情況入手.|a|的幾何意義是a這個數(shù)在數(shù)軸上對應的點到原點的距離.那么|a﹣1|可以看做a這個數(shù)在數(shù)軸上對應的點到1的距離;|a﹣1|+|a﹣2|就可以看作a這個數(shù)在數(shù)軸上對應的點到1和2兩個點的距離之和.下面我們結合數(shù)軸研究|a﹣1|+|a﹣2|的最小值.
我們先看a表示的點可能的3種情況,如圖所示:
(1)如圖①,a在1的左邊,從圖中很明顯可以看出a到1和2的距離之和大于1.
(2)如圖②,a在1和2之間(包括在1,2上),可以看出a到1和2的距離之和等于1.
(3)如圖③,a在2的右邊,從圖中很明顯可以看出a到1和2的距離之和大于1.
(問題解決)
(1)|a﹣2|+|a﹣5|的幾何意義是 .請你結合數(shù)軸探究:|a﹣2|+|a﹣5|的最小值是 .
(2)|a﹣1|+|a﹣2|+|a﹣3|的幾何意義是 .請你結合數(shù)軸探究:|a﹣1|+|a﹣2|+|a﹣3|的最小值是 ,并在圖④的數(shù)軸上描出得到最小值時a所在的位置,由此可以得出a為 .
(3)求出|a﹣1|+|a﹣2|+|a﹣3|+|a﹣4|+|a﹣5|的最小值.
(4)求出|a﹣1|+|a﹣2|+|a﹣3|+…+|a﹣2019|的最小值.
(拓展應用)
請在圖⑤的數(shù)軸上表示出a,使它到2,5的距離之和小于4,并直接寫出a的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是“過圓上一點作圓的切線”的尺規(guī)作圖過程.
已知:⊙O和⊙O上一點P.
求作:⊙O的切線MN,使MN經(jīng)過點P.
作法:如圖,
(1)作射線OP;
(2)以點P為圓心,小于OP的長為半徑作弧交射線OP于A,B兩點;
(3)分別以點A,B為圓心,以大于長為半徑作弧,兩弧交于M,N兩點;
(4)作直線MN.則MN就是所求作的⊙O的切線.
請回答:該尺規(guī)作圖的依據(jù)是____________________________________________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點和矩形的邊都在直線上,以點為圓心,以24為半徑作半圓,分別交直線于兩點.已知: ,,矩形自右向左在直線上平移,當點到達點時,矩形停止運動.在平移過程中,設矩形對角線與半圓的交點為 (點為半圓上遠離點的交點).
(1)如圖2,若與半圓相切,求的值;
(2)如圖3,當與半圓有兩個交點時,求線段的取值范圍;
(3)若線段的長為20,直接寫出此時的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, ,且,直線經(jīng)過點.設,于點,將射線繞點按逆時針方向旋轉,與直線交于點.
(1)當時, ;
(2)求證: ;
(3)若的外心在其內部,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在同一平面直角坐標系中有5個點:A(1,1),B(﹣3,﹣1),C(﹣3,1),D(﹣2.﹣2).
(1)畫出△ABC的外接圓⊙P,并指出點D與⊙P相的位置關系;
(2)E點是y軸上的一點,若直線DE與⊙P相切,求點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為了鼓勵居民節(jié)約用水,采用分段計費的方法按月計算每戶家庭的水費,月用水量不超過20時,按2元/計費;月用水量超過20時,其中的20仍按2元/收費,超過部分按元/計費.設每戶家庭用用水量為時,應交水費元.
(1)分別求出和時與的函數(shù)表達式;
(2)小明家第二季度交納水費的情況如下:
月份 | 四月份 | 五月份 | 六月份 |
交費金額 | 30元 | 34元 | 42.6元 |
小明家這個季度共用水多少立方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Q是上一定點,P是弦AB上一動點,C為AP中點,連接CQ,過點P作交于點D,連接AD,CD.
已知,設A,P兩點間的距離為,C,D兩點間的距離為.
(當點P與點A重合時,令y的值為1.30)
小榮根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探宄.
下面是小榮的探究過程,請補充完整:
(1)按照下表中自變量x的值進行取點、畫圖、測量,得到了y與x的幾組對應值:
(2)建立平面直角坐標系,描出以補全后的表中各組對應值為坐標的點,畫出該函數(shù)的圖象;
(3)結合函數(shù)圖象,解決問題:當時,AP的長度約為__________cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠MAN=90°,點C在邊AM上,AC=4,點B為邊AN上一動點,連接BC,△A′BC與△ABC關于BC所在直線對稱,點D,E分別為AC,BC的中點,連接DE并延長交A′B所在直線于點F,連接A′E.當△A′EF為直角三角形時,AB的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com