【題目】實(shí)數(shù)a、b、c在數(shù)軸上的位置如圖所示,化簡(jiǎn):﹣|a+c|+﹣|﹣2b|.
【答案】解:由數(shù)軸可得:c<a<0<b,
則a﹣b<0,a+c<0,c﹣b<0,﹣2b<0,
原式=|a﹣b|﹣|a+c|+|c﹣b|﹣|﹣2b|
=b﹣a+a+c+b﹣c﹣2b
=0
【解析】根據(jù)數(shù)軸上的點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系得到c<a<0<b,則a﹣b<0,a+c<0,c﹣b<0,﹣2b<0,再根據(jù)二次根式的性質(zhì)進(jìn)行化簡(jiǎn),即可解答.
【考點(diǎn)精析】本題主要考查了二次根式的性質(zhì)與化簡(jiǎn)的相關(guān)知識(shí)點(diǎn),需要掌握1、如果被開方數(shù)是分?jǐn)?shù)(包括小數(shù))或分式,先利用商的算數(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化進(jìn)行化簡(jiǎn).2、如果被開方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店將成本為30元的文化衫標(biāo)價(jià)50元出售.
(1)為了搞促銷活動(dòng)經(jīng)過兩次降價(jià)調(diào)至每件40.5元,若兩次降價(jià)的百分率相同,求每次降價(jià)的百分率;
(2)經(jīng)調(diào)查,該文化衫每降5元,每月可多售出100件,若該品牌文化衫按原標(biāo)價(jià)出售,每月可銷售200件,那么銷售價(jià)定為多少元,可以使該商品獲得最大的利潤?最大的利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)第六次全國人口普查數(shù)據(jù)公報(bào),淮安市常住人口約為480萬人.480萬(4800000)用科學(xué)記數(shù)法可表示為( )
A.4.8×104
B.4.8×105
C.4.8×106
D.4.8×107
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是邊長(zhǎng)為4的等邊三角形,BC在x軸上,點(diǎn)D為BC的中點(diǎn),點(diǎn)A在第一象限內(nèi),AB與y軸的正半軸相交于點(diǎn)E,點(diǎn)B(-1,0),P是AC上的一個(gè)動(dòng)點(diǎn)(P與點(diǎn)A、C不重合)
(1)求點(diǎn)A、E的坐標(biāo);
(2)若y=求過點(diǎn)A、E,求拋物線的解析式。
(3)連結(jié)PB、PD,設(shè)L為△PBD的周長(zhǎng),當(dāng)L取最小值時(shí),求點(diǎn)P的坐標(biāo)及L的最小值,并判斷此時(shí)點(diǎn)P是否在(2)中所求的拋物線上,請(qǐng)充分說明你的判斷理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果兩個(gè)相似三角形的對(duì)應(yīng)角平分線之比為2:5,較小三角形面積為8平方米,那么較大三角形的面積為_____________平方米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表給出了某班6名同學(xué)的身高情況(單位:cm).
學(xué)生 | A | B | C | D | E | F | |
身高(單位:cm) | 165 | ____ | 166 | ____ | ____ | 172 | |
身高與班級(jí)平 | 均身高的差值) | -1 | +2 | ____ | -3 | +4 | ____ |
(1)完成表中空的部分;
(2)他們6人中最高身高比最矮身高高多少?
(3)如果身高達(dá)到或超過平均身高時(shí)叫達(dá)標(biāo)身高,那么這6名同學(xué)身高的達(dá)標(biāo)率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為一邊向外作等邊三角形ACD,點(diǎn)E為AB的中點(diǎn),連結(jié)DE.
(1)證明DE∥CB;
(2)探索AC與AB滿足怎樣的數(shù)量關(guān)系時(shí),四邊形DCBE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 已知∠1+∠2=180o, ∠3=∠B, 試說明∠DEC+∠C=180o. 請(qǐng)完成下列填空:
解:∵∠1+∠2=180o(已知)
又∵∠1+ =180o(平角定義)
∴∠2= (同角的補(bǔ)角相等)
∴ (內(nèi)錯(cuò)角相等,兩直線平行)
∴∠3 = (兩直線平行,內(nèi)錯(cuò)角相等)
又∵∠3=∠B(已知)
∴ (等量代換)
∴ ∥ ( )
∴∠DEC+∠C=180o( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com