【題目】如圖,在直角坐標(biāo)系中,二次函數(shù)的圖象交x軸于點(diǎn)A,B,交y軸于點(diǎn)C,已知A的橫坐標(biāo)為

1)求B點(diǎn)的橫坐標(biāo)和直線的解析式;

2)二次函數(shù)的圖象有一點(diǎn)D,把點(diǎn)D向左平移m)個(gè)單位,將與該二次函數(shù)圖象上的另一點(diǎn)重合,將向上移動5個(gè)單位后,恰好落在直線上,求m的值.

【答案】1;(24

【解析】

1)根據(jù)題意可知.當(dāng)時(shí),,然后將代入函數(shù)解析式中,即可得到的值,然后再令,即可得到點(diǎn)和點(diǎn)的坐標(biāo),從而可以得到點(diǎn)的橫坐標(biāo)和直線的解析式;

2)設(shè)點(diǎn)的坐標(biāo),然后即可得到的坐標(biāo)和向上移動5個(gè)單位后的坐標(biāo),再根據(jù)二次函數(shù)的性質(zhì)和將向上移動5個(gè)單位后,恰好落在直線上,可以求得點(diǎn)的橫坐標(biāo),然后即可得到的值,注意題目中的值大于0

解:(1二次函數(shù)圖象交軸于點(diǎn),的橫坐標(biāo)為,

,

解得,

當(dāng)時(shí),,當(dāng)時(shí),

點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

設(shè)直線的解析式為

,得,

即直線的解析式為,

由上可得,點(diǎn)的橫坐標(biāo)為4,直線的解析式為;

2)設(shè)點(diǎn)的坐標(biāo)為,

則點(diǎn)的坐標(biāo)為,

點(diǎn)向上移動5個(gè)單位后的坐標(biāo)為,

,

該函數(shù)的對稱軸為直線,

,得,

解得,,

當(dāng)時(shí),,

當(dāng)時(shí),(舍去),

的值是4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBCAC平分∠BAD,∠ABC=60°,EAD上一點(diǎn),AE=2,DE=4,PAC 上一點(diǎn),則△PDE周長的最小值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線,直線與拋物線、軸分別相交于

1時(shí),點(diǎn)的坐標(biāo)為________;

2)當(dāng)兩點(diǎn)重合時(shí),求的值;

3)當(dāng)點(diǎn)達(dá)到最高時(shí),求拋物線解析式;

4)在拋物線軸所圍成的封閉圖形的邊界上,我們把橫坐標(biāo)是整數(shù)的點(diǎn)稱為可點(diǎn),直接寫出時(shí)可點(diǎn)的個(gè)數(shù)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形的頂點(diǎn),點(diǎn),反比例函數(shù)

(1)如圖1,雙曲線經(jīng)過點(diǎn)時(shí)求反比例函數(shù)的關(guān)系式;

 

(2)如圖2,正方形向下平移得到正方形軸上,反比例函數(shù)的圖象分別交正方形的邊、邊于點(diǎn)

①求的面積;

②如圖3,軸上一點(diǎn),是否存在是等腰三角形,若存在直接寫出點(diǎn)坐標(biāo),若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了緩解市區(qū)日益擁堵的交通狀況,長沙市地鐵建設(shè)工程指揮部對長沙地鐵4號線茶子山站工程進(jìn)行招標(biāo),接到了甲、乙兩個(gè)工程隊(duì)的指標(biāo)書,從指標(biāo)書中得知:甲工程隊(duì)單獨(dú)完成這項(xiàng)工程所需的時(shí)間是乙隊(duì)單獨(dú)完成這項(xiàng)工程所需的時(shí)間的3倍,若由甲隊(duì)先做2個(gè)月,剩下的工程由甲、乙兩隊(duì)合作4個(gè)月可以完成.

1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需幾個(gè)月?

2)已知甲隊(duì)每月的施工費(fèi)用是76萬元,乙隊(duì)每月的施工費(fèi)用是164萬元,工程預(yù)算的施工費(fèi)用為1000萬元,為縮短工期以減少隊(duì)交通的影響,擬安排甲、乙兩隊(duì)合作完成這項(xiàng)工程,則工程預(yù)算的施工費(fèi)用是否夠用?若不夠用,需追加預(yù)算多少萬元?請給出擬的判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班為推薦選手參加學(xué)校舉辦的祖國在我心中演講比賽活動,先在班級中進(jìn)行預(yù)賽,班主任根據(jù)學(xué)生的成績從高到低劃分為AB,CD四個(gè)等級,并繪制了不完整的兩種統(tǒng)計(jì)圖表.請根據(jù)圖中提供的信息,回答下列問題:

1a的值為 ;

2)求C等級對應(yīng)扇形的圓心角的度數(shù);

3)獲得A等級的4名學(xué)生中恰好有13女,該班將從中隨機(jī)選取2人,參加學(xué)校舉辦的演講比賽,請利用列表法或畫樹狀圖法,求恰好選中一男一女參加比賽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于兩點(diǎn),是以點(diǎn)為圓心,2為半徑的圓上的動點(diǎn),是線段的中點(diǎn),連結(jié).則線段的最大值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)B坐標(biāo)為(40),點(diǎn)C坐標(biāo)為(0,4),點(diǎn)D是拋物線的頂點(diǎn),過點(diǎn)Dx軸的垂線,垂足為E,連接BD

(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);

(2)點(diǎn)F是拋物線上的動點(diǎn),當(dāng)∠FBA=2BDE時(shí),求點(diǎn)F的坐標(biāo);

(3)若點(diǎn)Px軸上方拋物線上的動點(diǎn),以PB為邊作正方形PBGH,隨著點(diǎn)P的運(yùn)動,正方形的大小、位置也隨著改變,當(dāng)頂點(diǎn)GH恰好落在y軸上時(shí),請直接寫出點(diǎn)P的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,以AB為直徑的⊙O分別交BC,AC于點(diǎn)DE,連結(jié)EB,交OD于點(diǎn)F

1)求證:ODBE;

2)若DE,AB10,求AE的長;

3)若CDE的面積是OBF面積的,求的值.

查看答案和解析>>

同步練習(xí)冊答案