2、如圖,在四邊形ABCD中,E為AB上一點,過點E作EF∥BC,若∠D=120°,∠C=60°,則AD與EF的位置關(guān)系是
AD∥EF
,理由是
同旁內(nèi)角互補兩直線平行與平行于同一條直線的兩條直線平行
分析:首先由∠D+∠C=180°,根據(jù)同旁內(nèi)角互補,兩直線平行,得出AD∥BC;又EF∥BC,根據(jù)平行于同一條直線的兩條直線平行,得出AD∥EF.
解答:解:∵∠D=120°,∠C=60°,
∴∠D+∠C=180°(同旁內(nèi)角互補,兩直線平行).
又EF∥BC,
∴AD∥EF(平行于同一條直線的兩條直線平行).
答:AD與EF的位置關(guān)系是AD∥EF,理由是同旁內(nèi)角互補,兩直線平行與平行于同一條直線的兩條直線平行.
點評:正確識別“三線八角”中的同位角、內(nèi)錯角、同旁內(nèi)角是正確答題的關(guān)鍵,不能遇到相等或互補關(guān)系的角就誤認(rèn)為具有平行關(guān)系,只有同位角相等、內(nèi)錯角相等、同旁內(nèi)角互補,才能推出兩被截直線平行.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊答案