(2013•鐵嶺)如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點O為AB的中點,連接DO并延長到點E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當△ABC滿足什么條件時,矩形AEBD是正方形,并說明理由.
分析:(1)利用平行四邊形的判定首先得出四邊形AEBD是平行四邊形,進而理由等腰三角形的性質得出∠ADB=90°,即可得出答案;
(2)利用等腰直角三角形的性質得出AD=BD=CD,進而利用正方形的判定得出即可.
解答:(1)證明:∵點O為AB的中點,連接DO并延長到點E,使OE=OD,
∴四邊形AEBD是平行四邊形,
∵AB=AC,AD是△ABC的角平分線,
∴AD⊥BC,
∴∠ADB=90°,
∴平行四邊形AEBD是矩形;

(2)當∠BAC=90°時,
理由:∵∠BAC=90°,AB=AC,AD是△ABC的角平分線,
∴AD=BD=CD,
∵由(1)得四邊形AEBD是矩形,
∴矩形AEBD是正方形.
點評:此題主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性質等知識,熟練掌握正方形和矩形的判定是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•鐵嶺)如圖,在△ABC和△DEC中,已知AB=DE,還需添加兩個條件才能使△ABC≌△DEC,不能添加的一組條件是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鐵嶺)如圖,在數(shù)軸上表示不等式組
1-x>0
x+1≥0
的解集,其中正確的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鐵嶺)如圖是4塊小立方塊所搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置小方塊的個數(shù),其主視圖是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鐵嶺)如圖,點P是正比例函數(shù)y=x與反比例函數(shù)y=
kx
在第一象限內(nèi)的交點,PA⊥OP交x軸于點A,△POA的面積為2,則k的值是
2
2

查看答案和解析>>

同步練習冊答案