【題目】如圖,在同一平面直角坐標系中,反比例函數(shù)y= 與一次函數(shù)y=kx﹣1(k為常數(shù),且k>0)的圖象可能是( )
A.
B.
C.
D.

【答案】B
【解析】當k>0時,直線從左往右上升,雙曲線分別在第一、三象限,故A、C選項不符合題意;

∵一次函數(shù)y=kx﹣1與y軸交于負半軸,

∴D選項不符合題意,B選項符合題意,

所以答案是:B.

【考點精析】利用一次函數(shù)的圖象和性質和反比例函數(shù)的圖象對題目進行判斷即可得到答案,需要熟知一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠;反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線l與拋物線y=mx2+nx相交于A(1,3 ),B(4,0)兩點.

(1)求出拋物線的解析式;
(2)在坐標軸上是否存在點D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點D的坐標;若不存在,說明理由;
(3)點P是線段AB上一動點,(點P不與點A、B重合),過點P作PM∥OA,交第一象限內(nèi)的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,若△BCN、△PMN的面積SBCN、SPMN滿足SBCN=2SPMN , 求出 的值,并求出此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△PQR在直角坐標系中的位置如圖所示:

(1) 求出△PQR的面積;

(2) 畫出△P′Q′R′,使△P′Q′R′△PQR關于y軸對稱,寫出點P′Q′、R′的坐標;

(3)連接PP′,QQ′,判斷四邊形QQ′P′P的形狀,求出四邊形QQ′P′P的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連AD.

(1)求證:AD=AN;
(2)若AB=4 ,ON=1,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知OE平分OF平分

是直角,,求的度數(shù).

,,,請用x的代數(shù)式來表示直接寫出結果就行

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AOB內(nèi)部有三條射線,OE平分AOD,OC平分BOD

1)若AOB=90°,求EOC的度數(shù);

2)若AOB,求EOC的度數(shù);

3)如果將題中“平分”的條件改為EOA=AOD,DOC=DOBDOEDOC=43,AOB=90°,求EOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:如圖1,ABCD,PAB=130°,PCD=120°,求∠APC的度數(shù).

小明的思路是:過PPEAB,通過平行線性質來求∠APC.

(1)按小明的思路,易求得∠APC的度數(shù)為_____度;

(2)問題遷移:如圖2,ABCD,點P在射線OM上運動,記∠PAB=α,PCD=β,當點PB、D兩點之間運動時,問∠APCα、β之間有何數(shù)量關系?請說明理由;

(3)(2)的條件下,如果點PB、D兩點外側運動時(點P與點O、B、D三點不重合),請直接寫出∠APCα、β之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,E是AC的中點,OE交CD于點F.

(1)若∠BCD=36°,BC=10,求BD的長;
(2)判斷直線DE與⊙O的位置關系,并說明理由;
(3)求證:2CE2=ABEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D、F在線段AB上,點E、G分別在線段BCAC上,CDEF,∠1=∠2.

(1)判斷DGBC的位置關系,并說明理由;

(2)若DG是∠ADC的平分線,∠3=85°,且∠DCE:∠DCG=9:10ABCD有怎樣的位置關系?并說明理由.

查看答案和解析>>

同步練習冊答案