【題目】如圖,Rt△ABC中,∠ACB=90°,CD⊥AB,∠CAB的平分線AE交CD于點(diǎn)H、交CB于點(diǎn)E,EF⊥AB于點(diǎn)F,則下列結(jié)論中不正確的是( 。
A. ∠ACD=∠BB. CH=CE=EFC. CH=HDD. AC=AF
【答案】C
【解析】
根據(jù)角平分線的性質(zhì)可得CE=EF,由于AE是公共邊,利用三角形全等的判定定理,從而可得△AEF≌△AEC;利用全等三角形的性質(zhì)即可解得.
對(duì)于選項(xiàng)A,
∵CD⊥AB,
∴∠CAD+∠ACD=90°.
∵△ABC是直角三角形,
∴∠CAD+∠ABC=90°.
∵∠CAD+∠ABC=90°,∠CAD+∠ACD=90°,
∴∠ACD=∠ABC.
所以選項(xiàng)A不符合題意;
對(duì)于選項(xiàng)B,
∵AE是∠BAC的角平分線,∠ACE=90°,EF⊥AB,
∴CE=EF.
∵∠ACE=90°,EF⊥AB,CE=EF,AE=AE,
∴△AEF≌△AEC,
∴∠CEA=∠FEA.
∵CD⊥AB,EF⊥AB,
∴CD∥EF,
∴∠FEA=∠CHE.
∵∠FEA=∠CHE,∠CEA=∠FEA,
∴∠CHE=∠CEA,
∴CH=CE.
∵CH=CE,CE=EF,
∴CH=CE=EF.
所以選項(xiàng)B不符合題意;
對(duì)于選項(xiàng)D,
∵△AEF≌△AEC,
∴AC=AF.
所以選項(xiàng)D不符合題意.
根據(jù)題中條件無(wú)法得到CH=HD,
所以選項(xiàng)C符合題意.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在銳角△ABC中,延長(zhǎng)BC到點(diǎn)D,點(diǎn)O是AC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC,MN分別交∠ACB、∠ACD的平分線于E,F兩點(diǎn),連接AE、AF,在下列結(jié)論中:①OE=OF;②CE=CF;③若CE=12,CF=5,則OC的長(zhǎng)為6;④當(dāng)AO=CO時(shí),四邊形AECF是矩形.其中正確的是( 。
A. ①④B. ①②C. ①②③D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為美化校園,計(jì)劃對(duì)面積為400平方米的花壇區(qū)域進(jìn)行綠化,安排甲工程隊(duì)或乙工程隊(duì)完成.已知甲隊(duì)平均每天完成綠化的面積是乙隊(duì)的2倍,并且甲隊(duì)比乙隊(duì)能少用4天完成任務(wù),求甲、乙兩工程隊(duì)平均每天能完成綠化的面積分別是多少平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】特產(chǎn)店銷(xiāo)售一種水果,其進(jìn)價(jià)每千克40元,按60元出售,平均每天可售100千克,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天可增加20千克銷(xiāo)量.
(1)若該專(zhuān)賣(mài)店銷(xiāo)售這種核桃要想平均每天獲利2240元,每千克水果應(yīng)降多少元?
(2)若該專(zhuān)賣(mài)店銷(xiāo)售這種核桃要想平均每天獲利最大,每千克水果應(yīng)降多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙峰縣教育局要求各學(xué)校加強(qiáng)對(duì)學(xué)生的安全教育,全縣各中小學(xué)校引起高度重視,小剛就本班同學(xué)對(duì)安全知識(shí)的了解程度進(jìn)行了一次調(diào)查統(tǒng)計(jì).他將統(tǒng)計(jì)結(jié)果分為三類(lèi),A:熟悉;B:了解較多;C:一般了解。圖①和圖②是他采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答以下問(wèn)題:
(1)求小剛所在的班級(jí)共有多少名學(xué)生;
(2)在條形圖中,將表示“一般了解”的部分補(bǔ)充完整‘’
(3)在扇形統(tǒng)計(jì)圖中,計(jì)算“了解較多”部分所對(duì)應(yīng)的扇形圓心角的度數(shù);
(4)如果小剛所在年級(jí)共1000名同學(xué),請(qǐng)你估算全年級(jí)對(duì)安全知識(shí)“了解較多”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,弦AC⊥BD于點(diǎn)E,連接AB,CD,BC
(1)求證:∠AOB+∠COD=180°;
(2)若AB=8,CD=6,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求A、B、C的坐標(biāo);
(2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過(guò)點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過(guò)點(diǎn)Q作QN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長(zhǎng)最大時(shí),求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ.過(guò)拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG=DQ,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),P為△ABC所在平面上一點(diǎn),且∠APB=∠BPC=∠CPA=120°,則點(diǎn)P叫做△ABC的費(fèi)馬點(diǎn).
(1)如果點(diǎn)P為銳角△ABC的費(fèi)馬點(diǎn),且∠ABC=60°.
①求證:△ABP∽△BCP;
②若PA=3,PC=4,則PB= .
(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD 相交于P點(diǎn).如圖(2)
①求∠CPD的度數(shù);
②求證:P點(diǎn)為△ABC的費(fèi)馬點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com