【題目】某校為響應(yīng)我市全民閱讀活動(dòng),利用節(jié)假日面向社會(huì)開放學(xué)校圖書館.據(jù)統(tǒng)計(jì),第一個(gè)月進(jìn)館128人次,進(jìn)館人次逐月增加,到第三個(gè)月末累計(jì)進(jìn)館608人次,若進(jìn)館人次的月平均增長(zhǎng)率相同.

1)求進(jìn)館人次的月平均增長(zhǎng)率;

2)因條件限制,學(xué)校圖書館每月接納能力不超過(guò)500人次,在進(jìn)館人次的月平均增長(zhǎng)率不變的條件下,校圖書館能否接納第四個(gè)月的進(jìn)館人次,并說(shuō)明理由.

【答案】1)進(jìn)館人次的月平均增長(zhǎng)率為50%;(2)校圖書館能接納第四個(gè)月的進(jìn)館人次,見解析

【解析】

1)先分別表示出第二個(gè)月和第三個(gè)月的進(jìn)館人次,再根據(jù)第一個(gè)月的進(jìn)館人次加第二和第三個(gè)月的進(jìn)館人次等于608,列方程求解;

2)根據(jù)(1)所計(jì)算出的月平均增長(zhǎng)率,計(jì)算出第四個(gè)月的進(jìn)館人次,再與500比較大小即可.

(1)設(shè)進(jìn)館人次的月平均增長(zhǎng)率為x,則由題意得:128128(1x)128(1x)2608,化簡(jiǎn)得:4x212x70,

(2x1)(2x7)0,

x10.550%x2=-3.5(舍去)

答:進(jìn)館人次的月平均增長(zhǎng)率為50%

(2)∵進(jìn)館人次的月平均增長(zhǎng)率為50%,

∴第四個(gè)月的進(jìn)館人次為:128×(150%)3128×432500

答:校圖書館能接納第四個(gè)月的進(jìn)館人次.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是菱形ABCD的對(duì)角線BD上一點(diǎn),連接CP并延長(zhǎng),交ADE,交BA的延長(zhǎng)線于點(diǎn)F.

1)求證:.

2)如果,求線段PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】六一兒童節(jié),小文到公園游玩.看到公園的一段人行彎道MN(不計(jì)寬度),如圖,它與兩面互相垂直的圍墻OP、OQ之間有一塊空地MPOQN(MP⊥OP,NQ⊥OQ),他發(fā)現(xiàn)彎道MN上任一點(diǎn)到兩邊圍墻的垂線段與圍墻所圍成的矩形的面積都相等,比如:A、B、C是彎道MN上的三點(diǎn),矩形ADOG、矩形BEOH、矩形CFOI的面積相等.愛(ài)好數(shù)學(xué)的他建立了平面直角坐標(biāo)系(如圖),圖中三塊陰影部分的面積分別記為S1、S2、S3,并測(cè)得S2=6(單位:平方米).OG=GH=HI.

(1)求S1和S3的值;

(2)設(shè)T(x,y)是彎道MN上的任一點(diǎn),寫出y關(guān)于x的函數(shù)關(guān)系式;

(3)公園準(zhǔn)備對(duì)區(qū)域MPOQN內(nèi)部進(jìn)行綠化改造,在橫坐標(biāo)、縱坐標(biāo)都是偶數(shù)的點(diǎn)處種植花木(區(qū)域邊界上的點(diǎn)除外),已知MP=2米,NQ=3米.問(wèn)一共能種植多少棵花木?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=2,O為對(duì)角線AC的中點(diǎn),點(diǎn)P、Q分別從A和B兩點(diǎn)同時(shí)出發(fā),在邊AB和BC上勻速運(yùn)動(dòng),并且同時(shí)到達(dá)終點(diǎn)B、C,連接PO、QO并延長(zhǎng)分別與CD、DA交于點(diǎn)M、N.在整個(gè)運(yùn)動(dòng)過(guò)程中,圖中陰影部分面積的大小變化情況是( )

A. 一直增大 B. 一直減小 C. 先減小后增大 D. 先增大后減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一個(gè)直角三角形紙片放置在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn),點(diǎn).是邊上的一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),沿著折疊該紙片,得點(diǎn)的對(duì)應(yīng)點(diǎn).

1)如圖1,當(dāng)點(diǎn)在第一象限,且滿足時(shí),求點(diǎn)的坐標(biāo);

2)如圖2,當(dāng)中點(diǎn)時(shí),求的長(zhǎng);

3)當(dāng)時(shí),直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣5,0)和點(diǎn)B1,0).

1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

2)點(diǎn)P是拋物線上A、D之間的一點(diǎn),過(guò)點(diǎn)PPEx軸于點(diǎn)E,PGy軸,交拋物線于點(diǎn)G,過(guò)點(diǎn)GGFx軸于點(diǎn)F,當(dāng)矩形PEFG的周長(zhǎng)最大時(shí),求點(diǎn)P的橫坐標(biāo);

3)如圖2,連接ADBD,點(diǎn)M在線段AB上(不與A、B重合),作∠DMN=∠DBAMN交線段AD于點(diǎn)N,是否存在這樣點(diǎn)M,使得DMN為等腰三角形?若存在,求出AN的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)是反比例函數(shù)圖象上的一點(diǎn),過(guò)點(diǎn)軸于點(diǎn),連接,的面積為2.點(diǎn)的坐標(biāo)為.若一次函數(shù)的圖象經(jīng)過(guò)點(diǎn),交雙曲線的另一支于點(diǎn),交軸點(diǎn)

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)軸上的一個(gè)動(dòng)點(diǎn),且的面積為5,請(qǐng)求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了預(yù)防甲型H1N1,某校對(duì)教室采用藥薰消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量ymg)與時(shí)間x(min)成正比例,藥物燃燒后,yx成反比例,如圖所示,現(xiàn)測(cè)得藥物8min燃畢,此時(shí)室內(nèi)空氣每立方米的含藥量為6mg,請(qǐng)你根據(jù)題中提供的信息,解答下列問(wèn)題:

(1)藥物燃燒時(shí),求y關(guān)于x的函數(shù)關(guān)系式?自變量x的取值范圍是什么?藥物燃燒后yx的函數(shù)關(guān)系式呢?

(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6mg時(shí),生方可進(jìn)教室,那么從消毒開始,至少需要幾分鐘后,生才能進(jìn)入教室?

(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg且持續(xù)時(shí)間不低于10min時(shí),才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A1,1),B4,2),C3,4

1)請(qǐng)畫出將△ABC向左平移4個(gè)單位長(zhǎng)度后得到的圖形△A1B1C1;

2)請(qǐng)畫出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的圖形△A2B2C2;

3)在x軸上找一點(diǎn)P,使PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案