【題目】如圖,在直角坐標系中,已知直線軸相交于點,與軸交于點.

(1)求的值及的面積;

(2)點軸上,若是以為腰的等腰三角形,直接寫出點的坐標;

(3)點軸上,若點是直線上的一個動點,當的面積與的面積相等時,求點的坐標.

【答案】(1)K=- ,的面積=3;(2)(2,0)或(2-)或C3(-2,0);(3)(4,-3)或(-4,9).

【解析】

①將代入直線可得K=- ,的面積=OB·OA=3.

②如詳解圖,分類討論c1,c2,求坐標.

③如詳解圖,分類討論p1,p2,求坐標.

(1)將代入直線可得K=- ,點B坐標為(3,0),的面積=OB·OA·=2·3·=3.

②已知△ABC為等腰三角形,則AB=AC.可求出AB長為,A為圓心,AB為半徑畫弧,與x軸交點有2個,易得C點坐標為C1(2,0)或C22-).

B為圓心,BA為半徑畫弧與x軸交點有一個,坐標為C3(-2,0)

③設P點坐標為(x,

∵S△BAM=,∴P點在線段AB外.

若P在線段BA延長線上時,S△PBM=S△BAM+S△PAM

=

=

=3,x=4.

所以P坐標為(4,-3),

若P在線段AB延長線上,S△PBM=S△PAM-S△BAM=﹣

若﹣=3,x=-4,則P點為(-4,9).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABDBDC的平分線交于E,BE交CD于點F,1+2=90°.求證:

(1)ABCD;

(2)2+3=90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】每逢金秋送爽之時,正是大閘蟹上市的旺季,也是吃蟹的最好時機,可謂膏肥黃美

某經(jīng)銷商購進一批雌蟹、雄蟹共1000進價均為每只40,然后以雌蟹每只75元、雄蟹每只60元的價格售完,共獲利29000

1求該經(jīng)銷商分別購進雌蟹、雄蟹各多少只?

2民間有“九雌十雄”的說法,即九月吃雌蟹,十月吃雄蟹十月份,在進價不變的情況下該經(jīng)銷商決定調(diào)整價格,將雌蟹的價格在九月份的基礎上下調(diào)降價后售價不低于進價),雄蟹的價格上漲同時雌蟹的銷量較九月下降了,雄蟹的銷量上升了結果十月份的銷售額比九月份增加了1000,a的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一架梯子長25米,斜靠在一面墻上,梯子底端離墻7米。

1)這個梯子的頂端離地面有多高?

2如果梯子的頂端下滑了4米,那么梯子的底端在水平方向滑動了幾米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點D、E、F分別是邊AB、BCCA的中點,AH是邊BC上的高.

1)求證:四邊形ADEF是平行四邊形;

2)若∠AHF20°,∠AHD50°,求∠DEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點(﹣1,y1),(2y2),在反比例函數(shù)y=﹣的圖象上,則下列關系式正確的是( 。

A.y3y2y1B.y2y3y1

C.y3y1y2D.y2y1y3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以直線AB上一點O為端點作射線OC,使∠AOC65°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE90°

1)如圖①,若直角三角板DOE的一邊OD放在射線OA上,則∠COE   °

2)如圖②,將直角三角板DOE繞點O順時針方向轉動到某個位置,若OC恰好平分∠AOE,則∠COD   °

3)如圖③,將直角三角板DOE繞點O順時針方向轉動到某個位置,<∠AOD180°,如果∠CODAOE,求∠COD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】光在反射時,光束的路徑可用圖(1)來表示,叫做入射光線,叫做反射光線,從入射點引出的一條垂直于鏡面的射線叫做法線,的夾角叫入射角,的夾角叫反射角.根據(jù)科學實驗可得:.則圖(1)中的數(shù)量關系是:____________理由:___________;

生活中我們可以運用激光和兩塊相交的平面鏡進行測距.如圖(2)當一束激光射入到平面鏡上、被反射到平面鏡上,又被平面鏡反射后得到反射光線.

1)若反射光線沿著入射光線的方向反射回去,即,且,則____________;

2)猜想:當______時,任何射到平面鏡上的光線經(jīng)過平面鏡的兩次反射后,入射光線與反射光線總是平行的.請你根據(jù)所學過的知識及新知說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙三個教師承擔本學期期末考試的第17題的網(wǎng)上閱卷任務,若由這三人中的某一人獨立完成閱卷任務,則甲需要15小時,乙需要10小時,丙需要8小時。

1)如果甲、乙、丙三人同時改卷,那么需要多少時間完成?

2)如果按照甲、乙、丙、甲、乙、丙、……的次序輪流閱卷,每一輪中每人各閱卷1小時。那么要多少小時完成?

3)能否把(2)題所說的甲、乙、丙的次序作適當調(diào)整,其余的不變,使得完成這項任務的時間至少提前半小時?(答題要求:如認為不能,需要說明理由;如認為能,請至少說出一種輪流的次序,并求出相應能提前多少時間完成閱卷任務)

查看答案和解析>>

同步練習冊答案