如圖,在梯形PMNQ中,PQ∥MN,對角線PN和MQ相交于點O,并把梯形分成四部分,記這四部分的面積分別為S1、S2、S3、S4.試判斷S1+S2和S3+S4的大小關(guān)系,并證明你的結(jié)論.

【答案】分析:設PQ=m,MN=n,根據(jù)同底等高判斷△PMN和△QMN的面積相等,然后根據(jù)三角形的相似比,把s2,s3,s4都用s1以及m,n表示出來,然后用(S1+s2)-(S3+s4)化簡結(jié)果后看誰大誰。
解答:解:S1+S2>S3+S4
證明:設PQ=m,MN=n,∵△PMN和△QMN同底等高,
∴S△PMN=S△QMN,
∴S3+S2=S4+S2,即:S3=S4
∵△POQ∽△NOM,
∴S1:S2=(OQ:OM)2=m2:n2,∴
∵S1:S3=OQ:OM=m:n,∴
=
,∴S1+S2>S3+S4
點評:本題考查相似三角形的判定和性質(zhì)以及三角形面積的等底等高或者等高等情況的特性,本題最后做一個差的運算來判斷大。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知:直線a∥b,P、Q是直線a上的兩點,M、N是直線b上兩點.
(1)如圖①,線段PM、QN夾在平行直線a和b之間,四邊形PMNQ為等腰梯形,其兩腰PM=QN.請你參照圖①,在圖②中畫出異于圖①的一種圖形,使夾在平行直線a和b之間的兩條線段相等;
(2)我們繼續(xù)探究,發(fā)現(xiàn)用兩條平行直線a、b去截一些我們學過的圖形,會有兩條“曲線段相等”(曲線上兩點和它們之間的部分叫做“曲線段”.把經(jīng)過全等變換后能重合的兩條曲線段叫做“曲線段相等”).請你在圖③中畫出一種圖形,使夾在平行直線a和b之間的兩條曲線段相等;
(3)如圖④,若梯形PMNQ是一塊綠化地,梯形的上底PQ=m,下底MN=n,且m<n.現(xiàn)計劃把價格不同的兩種花草種植在S1、S2、S3、S4四塊地里,使得價格相同的花草不相鄰.為了節(jié)省費用,園藝師應選擇哪兩塊地種植價格較便宜的花草?請說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,若梯形PMNQ是一塊綠化地,梯形上底PQ=m,下底MN=n,現(xiàn)在計劃把價格不同的兩種花草種植在S1、S2、S3、S4四塊地里,使得價格相同的花草不相鄰,為了節(jié)省費用,園藝師應該把哪兩塊地種植較便宜的花草?通過計算說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形PMNQ中,PQ∥MN,對角線PN和MQ相交于點O,并把梯形分成四部分,記這四部分的面積分別為S1、S2、S3、S4.試判斷S1+S2和S3+S4的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在梯形PMNQ中,PQ∥MN,對角線PN和MQ相交于點O,并把梯形分成四部分,記這四部分的面積分別為S1、S2、S3、S4.試判斷S1+S2和S3+S4的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案