【題目】在一個不透明的布袋里裝有4個標有,2,3,4的小球,它們的形狀、大小、質地完全相同,小李從布袋里隨機取出一個小球,記下數(shù)字為x,小張在剩下的3個小球中隨機取出一個小球,記下數(shù)字為y,這樣確定了點Q的坐標(x,y).

(1)畫樹狀圖或列表,寫出點Q所有可能的坐標;

(2)求點Q(xy)落在第二象限的概率.

【答案】(1)見詳解 (2)

【解析】

(1)首先根據(jù)題意畫出表格,即可得到P的所以坐標;
(2)然后由表格求得所有等可能的結果與數(shù)字xy滿足點 落在第二象限的情況,再利用概率公式求解即可求得答案.

解:(1)列表得:

P所有可能的坐標有: 12種;

(2)∵共有12種等可能的結果,

其中點(x,y)落在第二象限的有3種,

即:,

∴點落在第二象限的概率為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,,,點EAB邊上的動點,過點B作直線CE的垂線,垂足為F,當點E從點A運動到點B時,點F的運動路徑長為(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的一元二次方程

1)若此方程的一個根為1,求的值;

2)求證:不論取何實數(shù),此方程都有兩個不相等的實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,直線lymx+nm0n0)與x、y軸分別相交于AB兩點,將△AOB繞點O逆時針旋轉90°得到△COD,過點A、BD的拋物線P叫做l的關聯(lián)拋物線,而l叫做P的關聯(lián)直線.

1)若ly=﹣2x+2,則P表示的函數(shù)解析式為   ;若Py=﹣x23x+4,則l表示的函數(shù)解析式為   

2)求P的對稱軸(用含m、n的代數(shù)式表示);

3)如圖②,若ly=﹣2x+4P的對稱軸與CD相交于點E,點Fl上,點QP的對稱軸上.當以點C,E,Q,F為頂點的四邊形是以CE為一邊的平行四邊形時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】足球賽期間,某商店銷售一批足球紀念冊,每本進價40元,規(guī)定銷售單價不低于44元,且獲利不高于30%.試銷售期間發(fā)現(xiàn),當銷售單價定為44元時,每天可售出300本,銷售單價每漲1元,每天銷售量減少10本,現(xiàn)商店決定提價銷售.設每天銷售為本,銷售單價為.

1)請直接寫出之間的函數(shù)關系式和自變量的取值范圍;

2)將足球紀念冊銷售單價定為多少元時,商店每天銷售紀念冊獲得的利潤元最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線y=ax2+bx+3x軸的兩個交點分別為A、B(1,0),與y軸交于點D,直線AD,拋物線頂點為C,作CHx軸于點H.

(1)求拋物線的解析式;

(2)拋物線上是否存在點M,使得SACD=SMAB?若存在,求出點M的坐標;若不存在,說明理由;

(3)若點Px軸上方的拋物線上一動點(P與頂點C不重合)PQAC于點Q,當PCQACH相似時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李航想利用太陽光測量樓高.他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對面墻上有這棟樓的影子,針對這種情況,他設計了一種測量方案,具體測量情況如下:如示意圖,李航邊移動邊觀察,發(fā)現(xiàn)站到點E處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時,測得李航落在墻上的影子高度CD=1.2m,CE=0.6m,CA=30m(點A、E、C在同一直線上).已知李航的身高EF1.6m,請你幫李航求出樓高AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點P、D分別是BC、AC邊上的點,且∠APD=B.

(1)求證:AC·CD=CP·BP;

(2)AB=10,BC=12,當PDAB時,求BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內接于O,BC=CDC=2BAD

1)求BOD的度數(shù);

2)求證:四邊形OBCD是菱形;

3)若O的半徑為r,ODA=45°,求ABD的面積(用含r的代數(shù)式表示).

查看答案和解析>>

同步練習冊答案