精英家教網 > 初中數學 > 題目詳情

【題目】如圖,△ACB和△ECD都是等腰直角三角形,△ACB的頂點A在△ECD的斜邊DE上,

求證:

【答案】證明見解析.

【解析】試題連結BD,根據等邊三角形的性質就可以得出△AEC≌△BDC,就可以得出AE=BD,∠E=∠BDC,由等腰直角三角形的性質就可以得出∠ADB=90°,由勾股定理就可以得出結論.

試題解析:證明:連結BD,

∵△ACB△ECD都是等腰直角三角形,

∴∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,

EC=DC,AC=BC,AC2+BC2=AB2,

∴2AC2=AB2∠ECD-ACD=∠ACB-∠ACD,

∴∠ACE=∠BCD

△AEC△BDC中,

∴△AEC≌△BDCSAS).

∴AE=BD,∠E=∠BDC

∴∠BDC=45°

∴∠BDC+∠ADC=90°,

∠ADB=90°

∴AD2+BD2=AB2

∴AD2+AE2=2AC2

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,C為線段AE上一動點(不與A、E重合),在AE同側分別作等邊△ABC和等邊△CDE,ADBE交于點O,ADBC交于點P,BECD交于點Q,連接PQ,以下五個結論:①AD=BE;PQAE;CP=CQ;BO=OE;⑤∠AOB=60°,恒成立的結論有

A. ①③⑤ B. ①③④⑤ C. ①②③⑤ D. ①②③④⑤

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,A1B1C1中,A1B14A1C15,B1C17.A2,B2,C2分別是邊B1C1,A1C1,A1B1的中點;點A3B3,C3分別是邊B2C2,A2C2A2B2的中點;;以此類推,則A4B4C4的周長是________,AnBnCn的周長是________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知多項式(x2+mxy+3)﹣(3x2y+1nx2).

1)若多項式的值與字母x的取值無關,求m,n的值;

2)先化簡多項式3m2mnn2)﹣(3m2+mn+n2),再求它的值;

3)在(1)的條件下,求(n+m2+2n+m2+3n+m2++9n+m2).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個不透明的口袋中有一個小球,上面分別標有字母a,b,c,每個小球除字母不同外其余均相同,小園同學從口袋中隨機摸出一個小球,記下字母后放回且攪勻,再從可口袋中隨機摸出一個小球記下字母.用畫樹狀圖(或列表)的方法,求小園同學兩次摸出的小球上的字母相同的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AEBF,AC平分∠BAD,且交BF于點C,BD平分∠ABC,且交AE于點D,連接CD,求證:

1ACBD

2)四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】兩根木條,一根長20cm,另一根長24cm,將它們一端重合且放在同一條直線上,此時兩根木條的中點之間的距離為(  )

A. 2cm B. 4cm C. 2cm22cm D. 4cm44cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某超市用3400元購進AB兩種文具盒共120個,這兩種文具盒的進價、標價如下表:

價格/類型

A

B

進價(元/只)

15

35

標價(元/只)

25

50

1)這兩種文具盒各購進多少只?

2)若A型文具盒按標價的9折出售,B型文具盒按標價的8折出售,那么這批文具盒全部售出后,超市共獲利多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC中,AB=AC,點D是BC的中點,點E是AD上任意一點.

(1)如圖1,連接BE、CE,問:BE=CE成立嗎?并說明理由;

(2)如圖2,若BAC=45°,BE的延長線與AC垂直相交于點F時,問:EF=CF成立嗎?并說明理由.

查看答案和解析>>

同步練習冊答案