【題目】已知二次函數(shù)的圖象如圖所示,則下列結論:

,同號;時,函數(shù)值相等;;④時,的值只能取;⑤時,.其中正確的有(

A. 2 B. 3 C. 4 D. 5

【答案】C

【解析】

由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.

解:①∵拋物線的開口方向向上,

a>0,

∵對稱軸為x==2>0,

又∵a>0,

b<0,

a,b異號,錯誤;

②∵x=1x=3關于x=2對稱,

∴當x=1x=3時,函數(shù)值相等,正確;

③∵x==2,

b=-4a,

4a+b=0,正確;

④∵y=-2正好為拋物線頂點坐標的縱坐標,

∴當y=-2時,x的值只能取2,正確;

⑤∵對稱軸為x=2,

x=-1x=5關于x=2對稱,

故當-1<x<5時,y<0.

∴②、、⑤正確.

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某人在山坡坡腳C處測得一座建筑物頂點A的仰角為63.4°,沿山坡向上走到P處再測得該建筑物頂點A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:12.

(1)求此人所在位置點P的鉛直高度.(結果精確到0.1米)

(2)求此人從所在位置點P走到建筑物底部B點的路程(結果精確到0.1米)

測傾器的高度忽略不計,參考數(shù)據(jù):tan53°≈,tan63.5°≈2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,以AC邊為直徑作⊙OBC邊于點D,交AB于點G,且DBC中點,DEAB,交AB于點E,交AC的延長線交于點F.

(1)求證:直線EF是⊙O的切線.

(2)若CF=3,cosCAB=,求⊙O的半徑和線段BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,Rt△ABC中,若AC=4,BC=3,DE⊥AC,且DE=DB,求AD的長;

(2)如圖2,已知△ABC,若AB邊上存在一點M,若AC邊上存在一點N,使MB=MN,且△AMN∽△ABC,請利用沒有刻度的直尺和圓規(guī),作出符合條件的線段MN(注:不寫作法,保留作圖痕跡,對圖中涉及到的點用字母進行標注).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,直線l:y=x+mx軸于點A,二次函數(shù)y=ax2﹣3ax+c(a≠0,且a、c是常數(shù))的圖象與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,與直線l交于點D,已知CDx軸平行,且SACD:SABD=3:5.

(1)求點A的坐標;

(2)求此二次函數(shù)的解析式;

(3)點P為直線l上一動點,將線段AC繞點P順時針旋轉α°(0°<α°<360°)得到線段A'C'(點A,A'是對應點,點C,C'是對應點).請問:是否存在這樣的點P,使得旋轉后點A'和點C'分別落在直線l和拋物線y=ax2﹣3ax+c的圖象上?若存在,請直接寫出點A'的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOB=30°,OA表示草地邊,OB表示河邊,點P表示家且在AOB內.某人要從家里出發(fā)先到草地邊給馬喂草,然后到河邊喂水,最后回到家里.

(1)請用尺規(guī)在圖上畫出此人行走的最短路線圖(保留作圖痕跡,不寫作法和理由).

(2)若OP=30米,求此人行走的最短路線的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1已知如圖1,等腰直角三角形ABC,B=90°,AD是∠BAC的外角平分線,CB邊的延長線于點D

求證BD=AB+AC

2)對于任意三角形ABCABC=2∠C,AD是∠BAC的外角平分線,CB邊的延長線于點D,如圖2,請你寫出線段AC、ABBD之間的數(shù)量關系并加以證明

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點的坐標為.

1)如圖1,若點的坐標為,是等腰直角三角形,,,求點坐標;

2)如圖2,若點的中點,求證:;

3)如圖3,是等腰直角三角形,,,是等邊三角形,連接,若,求點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtACB,ACB=90°,AC=BC,E點為射線CB上一動點,連接AE,作AFAEAF=AE.

(1)如圖1,過F點作FDACACD點,求證:EC+CD=DF

(2)如圖2,連接BFACG, =3,求證:E點為BC中點;

(3)E點在射線CB,連接BF與直線AC交于G,,=_______

查看答案和解析>>

同步練習冊答案