某區(qū)政府大力扶持大學生創(chuàng)業(yè).李剛在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數(shù):y=-10x+500.
(1)設李剛每月獲得利潤為w(元),當銷售單價定為每臺多少元時,每月可獲得最大利潤?
(2)如果李剛想要每月獲得2000元的利潤,那么銷售單價應定為多少元?
(3)根據(jù)物價部門規(guī)定,這種護眼臺燈的銷售單價不得高于32元,如果李剛想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?(成本=進價×銷售量)
(1)當銷售單價定為35元時,每月可獲得最大利潤;
(2)李明想要每月獲得2000元的利潤,銷售單價應定為30元或40元;
(3)想要每月獲得的利潤不低于2000元,每月的成本最少為3600元.

試題分析:(1)由題意得,每月銷售量與銷售單價之間的關系可近似看作一次函數(shù),利潤=(定價﹣進價)×銷售量,從而列出關系式;
(2)令w=2000,然后解一元二次方程,從而求出銷售單價;
(3)根據(jù)拋物線的性質和圖象,求出每月的成本.
試題解析:(1)由題意,得:w=(x﹣20)•y=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000,
x==35,
答:當銷售單價定為35元時,每月可獲得最大利潤;
(2)由題意,得:﹣10x2+700x﹣10000=2000,
解這個方程得:x1=30,x2=40,
答:李明想要每月獲得2000元的利潤,銷售單價應定為30元或40元;
(3)∵a=﹣10<0,
∴拋物線開口向下,
∴當30≤x≤40時,w≥2000,
∵x≤32,
∴當30≤x≤32時,w≥2000,
設成本為P(元),由題意,得:P=20(﹣10x+500)=﹣200x+10000,
∵a=﹣200<0,
∴P隨x的增大而減小,
∴當x=32時,P最小=3600,
答:想要每月獲得的利潤不低于2000元,每月的成本最少為3600元.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx+3的頂點為M(2,﹣1),交x軸與A、B兩點,交y軸于點C,其中點B的坐標為(3,0).

(1)求該拋物線的解析式;
(2)設經過點C的直線與該拋物線的另一個交點為D,且直線CD和直線CA關于直線CB對稱,求直線CD的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

拋物線y=x2﹣2x+3的頂點坐標是(  )
A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

對于每個x,函數(shù)y是y1=-x+6,y2=-2x2+4x+6這兩個函數(shù)的較小值,則函數(shù)y的最大值是
A.3B.4  C.5D.6

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商店進了一批服裝,每件成本50元,如果按每件60元出售,可銷售800件,如果每件提價5元出售,其銷量將減少100件。
(1)求售價為70元時的銷售量及銷售利潤;
(2)求銷售利潤y(元)與售價x(元)之間的函數(shù)關系,并求售價為多少元時獲得最大利潤;
(3)如果商店銷售這批服裝想獲利12000元,那么這批服裝的定價是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,二次函數(shù)y=ax2+bx+c圖象的一部分,其中對稱軸為x=﹣1,且過(﹣3,0),下列說法:①abc<0,②2a<b,③4a+2b+c=0,④若(﹣5,y1),(5,y2)是拋物線上的點,則y1<y2,其中說法正確的有( 。
A.4個 B.3個 C.2個 D.1個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

將拋物線向右平移1個單位,再向上平移3個單位,得到的拋物線是
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖為二次函數(shù)(a≠0)的圖象,則下列說法:①a>0 ②2a+b="0" ③a+b+c>0 ④當﹣1<x<3時,y>0其中正確的個數(shù)為(     ).
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知拋物線y=a-3x+1與x軸有交點,則a的取值范圍是(   )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案