【題目】如圖,在△ABC中,∠ABC=50°,ACB=60°,點(diǎn)EBC的延長(zhǎng)線上,∠ABC的平分線BD與∠ACE的平分線CD相交于點(diǎn)D,連接AD,以下結(jié)論:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正確的是__________(填寫(xiě)序號(hào))

【答案】①③④

【解析】

根據(jù)三角形內(nèi)角和定理、角平分線的定義、三角形外角的性質(zhì)、角平分線的性質(zhì)解答即可

∵∠ABC=50°,ACB=60°,∴∠BAC=180°﹣50°﹣60°=70°,①正確;

BD是∠ABC的平分線∴∠DBC=ABC=25°,∴∠DOC=25°+60°=85°,②錯(cuò)誤;

BDC=60°﹣25°=35°,③正確;

∵∠ABC的平分線BD與∠ACE的平分線CD相交于點(diǎn)D,AD是∠BAC的外角平分線∴∠DAC=55°,④正確

故答案為:①③④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰三角形中,上一動(dòng)點(diǎn),點(diǎn)的延長(zhǎng)線上,平分,交于點(diǎn).

(1)如圖①,連接,求證: ;

(2)如圖②,當(dāng)時(shí),求證: ;

(3)如圖③,當(dāng)時(shí),若平分,求證: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB的垂直平分線分別交AB、BC于點(diǎn)M、P,AC的垂直平分線分別交AC、BC于點(diǎn)N、Q,∠BAC=110°,則∠PAQ=_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)經(jīng)過(guò)點(diǎn)A(4,﹣5),與x軸的負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=5OB,拋物線的頂點(diǎn)為點(diǎn)D.
(1)求這條拋物線的表達(dá)式;
(2)聯(lián)結(jié)AB、BC、CD、DA,求四邊形ABCD的面積;
(3)如果點(diǎn)E在y軸的正半軸上,且∠BEO=∠ABC,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC的周長(zhǎng)是20,OB和OC分別平分∠ABC和∠ACB,OD⊥BC于點(diǎn)D,且OD=3,則△ABC的面積是( 。

A. 20 B. 25 C. 30 D. 35

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠A=60°,∠B=58°.甲、乙兩人想在△ABC外部取一點(diǎn)D,使得△ABC與△DCB全等,其作法如下:
(甲)①作∠A的角平分線L.
②以B為圓心,BC長(zhǎng)為半徑畫(huà)弧,交L于D點(diǎn),則D即為所求.
(乙)①過(guò)B作平行AC的直線L.
②過(guò)C作平行AB的直線M,交L于D點(diǎn),則D即為所求.
對(duì)于甲、乙兩人的作法,下列判斷何者正確?( 。

A.兩人皆正確
B.兩人皆錯(cuò)誤
C.甲正確,乙錯(cuò)誤
D.甲錯(cuò)誤,乙正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算,正確的是( )
A.(﹣2)2=4
B.
C.46÷(﹣2)6=64
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等邊△ABC內(nèi)有一點(diǎn)P,且PA=3,PB=4,PC=5,則∠APB=度.

查看答案和解析>>

同步練習(xí)冊(cè)答案