13、從五邊形的一個頂點出發(fā),分別連接這個點與其余各頂點,可以把五邊形分割成幾個三角形( 。
分析:從n邊形的一個頂點有(n-3)條對角線,分成了(n-2)個三角形.
解答:解:當n=5時,則有5-2=3個.
故選B.
點評:熟悉公式:從n邊形的一個頂點有(n-3)條對角線,分成了(n-2)個三角形.然后代入計算.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

在一個不透明的盒子中裝有相同形狀和大小的2個黃球、1個黑球和若干紅球,且已知從盒中隨機摸出一個球為黃球的概率為
13

(1)則盒中有
3
3
個紅球;
(2)一枚棋子放在邊長為1個單位長度的正五邊形ABCDE的頂點A處,將棋子沿邊按順時針方向走動,通過摸球來確定棋子的走法.其規(guī)則是:摸到紅球,則棋子走1個單位長度,摸到黃球,則棋子走2個單位長度,摸到黑球,則棋子走3個單位長度,先摸出一個球,再從剩下的球中摸出一個球,根據(jù)摸出的兩個球的顏色兩次連續(xù)走動棋子.兩次連續(xù)走動之后,棋子走到哪一點的可能性最大?并求出棋子走到該點的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖1,是某市公園周圍街巷的示意圖,A點表示1街與2巷的十字路口,B點表示3街與5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A點到B點的一條路徑,那么,你能同樣的方法寫出由A點到B點盡可能近的其他兩條路徑嗎?

(2)從正三角形、正四邊形、正五邊形、正六邊形、正八邊形、正十邊形、正十二邊形中任選兩種正多邊形鑲嵌,請全部寫出這兩種正多邊形.并從其中任選一種探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.
(3)如圖2所示,已知AB∥CD,分別探索下列四個圖形中∠P(均為小于平角的角)與∠A,∠C的關(guān)系,請你從所得的四個關(guān)系中任選一個加以說明.
(4)閱讀材料:多邊形上或內(nèi)部的一點與多邊形各頂點的連線,將多邊形分割成若干個小三角形.如圖3給出了四邊形的具體分割方法,分別將四邊形分割成了2個、3個、4個小三角形.
請你按照上述方法將圖4中的六邊形進行分割,并寫出得到的小三角形的個數(shù)以及求出每個圖形中的六邊形的內(nèi)角和.試把這一結(jié)論推廣至n邊形,并推導出n邊形內(nèi)角和的計算公式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

(1)如圖1,是某市公園周圍街巷的示意圖,A點表示1街與2巷的十字路口,B點表示3街與5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A點到B點的一條路徑,那么,你能同樣的方法寫出由A點到B點盡可能近的其他兩條路徑嗎?

(2)從正三角形、正四邊形、正五邊形、正六邊形、正八邊形、正十邊形、正十二邊形中任選兩種正多邊形鑲嵌,請全部寫出這兩種正多邊形.并從其中任選一種探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.
(3)如圖2所示,已知AB∥CD,分別探索下列四個圖形中∠P(均為小于平角的角)與∠A,∠C的關(guān)系,請你從所得的四個關(guān)系中任選一個加以說明.
(4)閱讀材料:多邊形上或內(nèi)部的一點與多邊形各頂點的連線,將多邊形分割成若干個小三角形.如圖3給出了四邊形的具體分割方法,分別將四邊形分割成了2個、3個、4個小三角形.
請你按照上述方法將圖4中的六邊形進行分割,并寫出得到的小三角形的個數(shù)以及求出每個圖形中的六邊形的內(nèi)角和.試把這一結(jié)論推廣至n邊形,并推導出n邊形內(nèi)角和的計算公式.

查看答案和解析>>

科目:初中數(shù)學 來源:河北省期中題 題型:解答題

(1)如圖1,是某市公園周圍街巷的示意圖,A點表示1街與2巷的十字路口,B點表示3街與5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A點到B點的一條路徑,那么,你能同樣的方法寫出由A點到B點盡可能近的其他兩條路徑嗎?

(2)從正三角形、正四邊形、正五邊形、正六邊形、正八邊形、正十邊形、正十二邊形中任選兩種正多邊形鑲嵌,請全部寫出這兩種正多邊形.并從其中任選一種探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.
(3)如圖2所示,已知AB∥CD,分別探索下列四個圖形中∠P(均為小于平角的角)與∠A,∠C的關(guān)系,請你從所得的四個關(guān)系中任選一個加以說明.
(4)閱讀材料:多邊形上或內(nèi)部的一點與多邊形各頂點的連線,將多邊形分割成若干個小三角形.如圖3給出了四邊形的具體分割方法,分別將四邊形分割成了2個、3個、4個小三角形.請你按照上述方法將圖4中的六邊形進行分割,并寫出得到的小三角形的個數(shù)以及求出每個圖形中的六邊形的內(nèi)角和.試把這一結(jié)論推廣至n邊形,并推導出n邊形內(nèi)角和的計算公式.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年湖北省孝感市安陸市中考數(shù)學模擬試卷(解析版) 題型:解答題

在一個不透明的盒子中裝有相同形狀和大小的2個黃球、1個黑球和若干紅球,且已知從盒中隨機摸出一個球為黃球的概率為
(1)則盒中有______個紅球;
(2)一枚棋子放在邊長為1個單位長度的正五邊形ABCDE的頂點A處,將棋子沿邊按順時針方向走動,通過摸球來確定棋子的走法.其規(guī)則是:摸到紅球,則棋子走1個單位長度,摸到黃球,則棋子走2個單位長度,摸到黑球,則棋子走3個單位長度,先摸出一個球,再從剩下的球中摸出一個球,根據(jù)摸出的兩個球的顏色兩次連續(xù)走動棋子.兩次連續(xù)走動之后,棋子走到哪一點的可能性最大?并求出棋子走到該點的概率.

查看答案和解析>>

同步練習冊答案