【題目】是一張等腰直角三角形紙板,,,在這張紙板中剪出一個(gè)盡可能大的正方形稱為第次剪;在余下的中,分別剪取正方形,得到兩個(gè)相同的正方形,稱為第次剪。ㄈ鐖D);繼續(xù)操作下去;第次剪取后,余下的所有小三角形的面積之和是________

【答案】

【解析】

根據(jù)題意,可求得SAED+SDBF=S正方形ECFD=S1=4,同理可得規(guī)律:Sn即是第n次剪取后剩余三角形面積和,根據(jù)此規(guī)律求解即可答案.

∵四邊形ECFD是正方形,

DE=EC=CF=DF,AED=DFB=90°,

∵△ABC是等腰直角三角形,

∴∠A=B=45°,

AE=DE=EC=DF=BF=EC=CF,

AC=BC=4,

DE=DF=2,

SAED+SDBF=S正方形ECFD=S1=4,

同理:S2即是第二次剪取后剩余三角形面積和,Sn即是第n次剪取后剩余三角形面積和,

∴第一次剪取后剩余三角形面積和為:8-S1=4=22=S1

第二次剪取后剩余三角形面積和為:S1-S2=4-2=21=S2,

第三次剪取后剩余三角形面積和為:S2-S3=20=S3,

n次剪取后剩余三角形面積和為:Sn-1-Sn=Sn=

故第64次剪取后,余下的所有小三角形的面積之和是:

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,,DBC的中點(diǎn),過點(diǎn)C于點(diǎn)G,過點(diǎn)B于點(diǎn)B,交CG的延長線于點(diǎn)F,連接DFAB于點(diǎn)E.

(1)求證:;

(2)求證:AB垂直平分DF;

(3)連接AF,試判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,,的平分線交于點(diǎn),過點(diǎn),分別交、于點(diǎn)、,若的周長為18,則的長是( )

A.8B.9C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某倉儲中心有一斜坡AB,其坡比為i=12,頂部A處的高AC4 m,B,C在同一水平面上.

(1)求斜坡AB的水平寬度BC;

(2)矩形DEFG為長方形貨柜的側(cè)面圖,其中DE=2.5 m,EF=2 m.將貨柜沿斜坡向上運(yùn)送,當(dāng)BF=3.5 m時(shí),求點(diǎn)D離地面的高.(≈2.236,結(jié)果精確到0.1 m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小華剪了兩條寬均為的紙條,交叉疊放在一起,且它們的交角為,則它們重疊部分的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC是等腰直角三角形,BAC= 90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BDCF成立.

1當(dāng)ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.

2當(dāng)ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長DB交CF于點(diǎn)H.

求證:BDCF;

當(dāng)AB=2,AD=3時(shí),求線段DH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在ABC 中,ABAC 邊的垂直平分線相交于點(diǎn) O,分別交 BC 邊于點(diǎn) MN,連接 AMAN

1)若AMN 的周長為 6,求 BC 的長;

2)若∠MON=30°,求∠MAN 的度數(shù);

3)若∠MON=45°,BM=3,BC=12,求 MN 的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是邊長為1的正方形ABCD的對角線,BE平分∠DBCDC于點(diǎn)E,延長BC到點(diǎn)F,使CF=CE,連接DF,交BE的延長線于點(diǎn)G.

(1)求證:△BCE≌△DCF;

(2)求CF的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AB∥CD,AB⊥BC,以BC為直徑的⊙OAD相切,點(diǎn)EAD的中點(diǎn),下列結(jié)論正確的個(gè)數(shù)是( 。

(1)AB+CD=AD;(2)SBCE=SABE+SDCE;(3)ABCD=;(4)∠ABE=∠DCE.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案