【題目】如圖,拋物線交x軸于點A(1,0),交y軸于點B,對稱軸是x=2.

(1)求拋物線的解析式;

(2)點P是拋物線對稱軸上的一個動點,是否存在點P,使PAB的周長最?若存在,求出點P的坐標;若不存在,請說明理由.

【答案】(1);(2)存在,P(2,1)

【解析】

試題分析:(1)根據(jù)拋物線經(jīng)過點A(1,0),對稱軸是x=2列出方程組,解方程組求出b、c的值即可;

(2)因為點A與點C關(guān)于x=2對稱,根據(jù)軸對稱的性質(zhì),連接BC與x=2交于點P,則點P即為所求,求出直線BC與x=2的交點即可.

試題解析:(1)由題意得,,解得b=4,c=3,拋物線的解析式為.;

(2)點A與點C關(guān)于x=2對稱,連接BC與x=2交于點P,則點P即為所求,根據(jù)拋物線的對稱性可知,點C的坐標為(3,0),與y軸的交點為(0,3),設(shè)直線BC的解析式為:,解得直線BC的解析式為:,則直線BC與x=2的交點坐標為:(2,1),點P的交點坐標為:(2,1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,BO平分∠ABC,CO平分△ABC的外角∠ACD,MN經(jīng)過點O,與AB,AC相交于點M,N,且MN∥BC,則BM,CN之間的關(guān)系是(
A.BM+CN=MN
B.BM﹣CN=MN
C.CN﹣BM=MN
D.BM﹣CN=2MN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角坐標系xoy中,直線l:y=kx+b交x軸,y軸于點E,F(xiàn),點B的坐標是(2,2),過點B分別作x軸、y軸的垂線,垂足為A、C,點D是線段CO上的動點,以BD為對稱軸,作與△BCD或軸對稱的△BC′D.

(1)當(dāng)∠CBD=15°時,求點C′的坐標.

(2)當(dāng)圖1中的直線l經(jīng)過點A,且時(如圖2),求點D由C到O的運動過程中,線段BC′掃過的圖形與△OAF重疊部分的面積.

(3)當(dāng)圖1中的直線l經(jīng)過點D,C′時(如圖3),以DE為對稱軸,作于△DOE或軸對稱的△DO′E,連結(jié)O′C,O′O,問是否存在點D,使得△DO′E與△CO′O相似?若存在,求出k、b的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中是假命題的是( 。

A. 一組對邊平行且相等的四邊形是平行四邊形

B. 一組對邊相等且有一個角是直角的四邊形是矩形

C. 一組鄰邊相等的平行四邊形是菱形

D. 一組鄰邊相等的矩形是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAC=130°,若MP和QN分別垂直平分AB和AC,則∠PAQ等于(

A.50°
B.75°
C.80°
D.105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=12cm,BC=24cm,如果將該矩形沿對角線BD折疊,那么圖中陰影部分的面積( )cm2

A.72
B.90
C.108
D.144

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫圖表示一個點從數(shù)軸上的原點開始向右移動3個單位長度,再向左移動2個單位長度;這時表示什么數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了深化改革,某校積極開展校本課程建設(shè),計劃成立“文學(xué)鑒賞”、“科學(xué)實驗”、“音樂舞蹈”和“手工編織”等多個社團,要求每位學(xué)生都自主選擇其中一個社團.為此,隨機調(diào)查了本校各年級部分學(xué)生選擇社團的意向,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖表(不完整):
某校被調(diào)查學(xué)生選擇社團意向統(tǒng)計表

選擇意向

所占百分比

文學(xué)鑒賞

a

科學(xué)實驗

35%

音樂舞蹈

b

手工編織

10%

其他

c


根據(jù)統(tǒng)計圖表中的信息,解答下列問題:
(1)求本次調(diào)查的學(xué)生總?cè)藬?shù)及a,b,c的值;
(2)將條形統(tǒng)計圖補充完整;
(3)若該校共有1200名學(xué)生,試估計全校選擇“科學(xué)實驗”社團的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6×0÷10=.

查看答案和解析>>

同步練習(xí)冊答案