【題目】規(guī)定:[x]表示不大于x的最大整數(shù),(x)表示不小于x的最小整數(shù),[x)表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2.則下列說法正確的是 . (寫出所有正確說法的序號) ①當x=1.7時,[x]+(x)+[x)=6;
②當x=﹣2.1時,[x]+(x)+[x)=﹣7;
③方程4[x]+3(x)+[x)=11的解為1<x<1.5;
④當﹣1<x<1時,函數(shù)y=[x]+(x)+x的圖象與正比例函數(shù)y=4x的圖象有兩個交點.
【答案】②③
【解析】解:①當x=1.7時, [x]+(x)+[x)
=[1.7]+(1.7)+[1.7)=1+2+2=5,故①錯誤;②當x=﹣2.1時,
[x]+(x)+[x)
=[﹣2.1]+(﹣2.1)+[﹣2.1)
=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正確;③當1<x<1.5時,
4[x]+3(x)+[x)
=4×1+3×2+1
=4+6+1
=11,故③正確;④∵﹣1<x<1時,
∴當﹣1<x<﹣0.5時,y=[x]+(x)+x=﹣1+0+x=x﹣1,
當﹣0.5<x<0時,y=[x]+(x)+x=﹣1+0+x=x﹣1,
當x=0時,y=[x]+(x)+x=0+0+0=0,
當0<x<0.5時,y=[x]+(x)+x=0+1+x=x+1,
當0.5<x<1時,y=[x]+(x)+x=0+1+x=x+1,
∵y=4x,則x﹣1=4x時,得x= ;x+1=4x時,得x= ;當x=0時,y=4x=0,
∴當﹣1<x<1時,函數(shù)y=[x]+(x)+x的圖象與正比例函數(shù)y=4x的圖象有三個交點,故④錯誤,
所以答案是:②③.
【考點精析】利用一元一次不等式組的解法和有理數(shù)大小比較對題目進行判斷即可得到答案,需要熟知解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 );有理數(shù)比大小:1、正數(shù)的絕對值越大,這個數(shù)越大2、正數(shù)永遠比0大,負數(shù)永遠比0小3、正數(shù)大于一切負數(shù)4、兩個負數(shù)比大小,絕對值大的反而小5、數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大6、大數(shù)-小數(shù) > 0,小數(shù)-大數(shù) < 0.
科目:初中數(shù)學 來源: 題型:
【題目】某地區(qū)為了進一步緩解交通擁堵問題,決定修建一條長為6千米的公路.如果平均每天的修建費y(萬元)與修建天數(shù)x(天)之間在30≤x≤120,具有一次函數(shù)的關系,如下表所示.
X | 50 | 60 | 90 | 120 |
y | 40 | 38 | 32 | 26 |
(1)求y關于x的函數(shù)解析式;
(2)后來在修建的過程中計劃發(fā)生改變,政府決定多修2千米,因此在沒有增減建設力量的情況下,修完這條路比計劃晚了15天,求原計劃每天的修建費.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAC 的角平分線與 BC 的垂直平分線交于點 D,DE⊥AB, DF⊥AC,垂足分別為 E,F(xiàn).若 AB=10,AC=8,求 BE 長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D是邊AC上一點,BC=BD=AD,則∠A的大小是( 。
A. 36° B. 54° C. 72° D. 30°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用A、B兩種機器人搬運大米,A型機器人比B型機器人每小時多搬運20袋大米,A型機器人搬運700袋大米與B型機器人搬運500袋大米所用時間相等.求A、B型機器人每小時分別搬運多少袋大米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸分別交于A(﹣1,0),B(5,0)兩點.
(1)求拋物線的解析式;
(2)在第二象限內(nèi)取一點C,作CD垂直X軸于點D,鏈接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個單位,當點C落在拋物線上時,求m的值;
(3)在(2)的條件下,當點C第一次落在拋物線上記為點E,點P是拋物線對稱軸上一點.試探究:在拋物線上是否存在點Q,使以點B、E、P、Q為頂點的四邊形是平行四邊形?若存在,請出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,∠1=∠2=∠3=∠4=24°,根據(jù)圖形填空:
(1)是∠2的3倍的角是_________________(用字母表示)
(2)是∠AOD的的角有_________個;
(3)射線OC是哪個角的3等分線?又是哪個角的4等分線?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在運動會前夕,育紅中學都會購買籃球、足球作為獎品.若購買10個籃球和15個足球共花費3000元,且購買一個籃球比購買一個足球多花50元.
(1)求購買一個籃球,一個足球各需多少元?
(2)今年學校計劃購買這種籃球和足球共10個,恰逢商場在搞促銷活動,籃球打九折,足球打八五折,若此次購買兩種球的總費用不超過1050元,則最多可購買多少個籃球?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com