年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在Rt△ABC中,∠B=90°,分別以點(diǎn)A、C為圓心,大于AC長為半徑畫弧,兩弧相交于點(diǎn)M、N,連接MN,與AC、BC分別交于點(diǎn)D、E,連接AE.
(1)求∠ADE;(直接寫出結(jié)果)
(2)當(dāng)AB=3,AC=5時(shí),求△ABE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將△ABC沿BC方向平移2cm得到△DEF,若△ABC的周長為16cm,則四邊形ABFD的周長為( )
(A)16cm (B)18cm (C)20cm (D)22cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
類比梯形的定義,我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.
(1)已知:如圖1,四邊形ABCD是“等對角四邊形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度數(shù).
(2)在探究“等對角四邊形”性質(zhì)時(shí):
①小紅畫了一個(gè)“等對角四邊形”ABCD(如圖2),其中∠ABC=∠ADC,AB=AD,此時(shí)她發(fā)現(xiàn)CB=CD成立.請你證明此結(jié)論;
②由此小紅猜想:“對于任意‘等對角四邊形’,當(dāng)一組鄰邊相等時(shí),另一組鄰邊也相等”.你認(rèn)為她的猜想正確嗎?若正確,請證明;若不正確,請舉出反例.
(3)已知:在“等對角四邊形"ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求對角線AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一個(gè)圓錐的母線長是9,底面圓的半徑是6,則這個(gè)圓錐的側(cè)面積是( )
A.81 B. 27 C.54 D.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,CD=2,則點(diǎn)D到AB的距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
學(xué)生的學(xué)習(xí)興趣如何是每位教師非常關(guān)注的問題.為此,某校教師對該校部分學(xué)生的學(xué)習(xí)興趣進(jìn)行了一次抽樣調(diào)查(把學(xué)生的學(xué)習(xí)興趣分為三個(gè)層次,A層次:很感興趣;B層次:較感興趣;C層次:不感興趣),并將調(diào)查結(jié)果繪制成了圖①和圖②的統(tǒng)計(jì)圖(不完整).請你根據(jù)圖中提供的信息,解答下列問題:
⑴ 此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
⑵ 將圖①、圖②補(bǔ)充完整;
⑶ 求圖②中C層次所在扇形的圓心角的度數(shù);
⑷ 根據(jù)抽樣調(diào)查結(jié)果,請你估算該校1200名學(xué)生中大約有多少名學(xué)生對學(xué)習(xí)感興趣(包括A層次和B層次).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知二次函數(shù)y=x2﹣2mx+m2+3(m是常數(shù)).
(1)求證:不論m為何值,該函數(shù)的圖象與x軸沒有公共點(diǎn);
(2)把該函數(shù)的圖象沿y軸向下平移多少個(gè)單位長度后,得到的函數(shù)的圖象與x軸只有一個(gè)公共點(diǎn)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com