【題目】某校為了解本校的選修課教學(xué),校教務(wù)處在七、八年級(jí)所有班級(jí)中,每班隨機(jī)抽取了6名學(xué)生,并對(duì)他們的選修課喜歡程度情況進(jìn)行了問卷調(diào)查,喜歡程度分為:“A﹣非常喜歡”、“B﹣比較喜歡”、“C﹣不太喜歡”、“D﹣很不喜歡”,針對(duì)這個(gè)題目,問卷時(shí)要求每位被調(diào)查的學(xué)生必須從中選一項(xiàng)且只能選一項(xiàng).現(xiàn)將統(tǒng)計(jì)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)以上提供的信息,解答下列問題:

1)補(bǔ)全上面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

2)若接核七、八年級(jí)共有700名學(xué)生,請(qǐng)你估境該年級(jí)學(xué)生中對(duì)遠(yuǎn)修課“不太喜歡”的有多少人?

【答案】1)詳見解析;(270

【解析】

1)根據(jù)不太喜歡的人數(shù)和所占的百分比求出調(diào)查的總?cè)藬?shù),再用總?cè)藬?shù)減去其它人數(shù)求出非常喜歡的人數(shù),再用各自的人數(shù)除以總?cè)藬?shù)求出各自所占的百分比,從而補(bǔ)全統(tǒng)計(jì)圖;

2)用總?cè)藬?shù)乘以不太喜歡所占的百分比即可.

解:(1)調(diào)查的學(xué)生有:12÷10%120(人),

喜歡A的有:1203012672(人),

B所占的百分比是:30÷120×100%25%,

A所占的百分比是:72÷120×100%60%,

補(bǔ)圖如下:

2)根據(jù)題意得:

700×10%70(人),

答:該年級(jí)學(xué)生中對(duì)遠(yuǎn)修課不太喜歡的有70人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCO的邊OC、OA,分別在x軸、y軸上,點(diǎn)E在邊BC上,將該矩形沿AE折疊,點(diǎn)B恰好落在邊OC上的F處,若OA=8,CF=4,則點(diǎn)E的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E點(diǎn)為DF上的點(diǎn),BAC上的點(diǎn),12CD

試說明:ACDF

證明:∵∠12(已知)

13,24

∴∠34

∴∠CABD

∵∠CD(已知

∴∠DABD(等量代換)

ACDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)大小不同的等腰直角三角板按圖①所示的位置放置,圖②是由它抽象畫出的幾何圖形,,,,,,在同一條直線上,連接.

(1)請(qǐng)找出圖②中與全等的三角形,并給予證明(說明:結(jié)論中不得含有未標(biāo)識(shí)的字母);

(2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線 與x軸交于點(diǎn)A,與直線 y=kx-3交于點(diǎn)C(c,6),直線 與y軸交于點(diǎn)B,連接AB.
(1)求k的值;
(2)求證:∠CAO=∠BAO;
(3)P為OA上一點(diǎn),連結(jié)PB,M為PB中點(diǎn),延長MO交直線AC于點(diǎn)N,若OP=x, ,求y關(guān)于x的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,∠A=20°,以△ABC的一邊為邊畫等腰三角形,使得它的第三個(gè)頂點(diǎn)在△ABC的其他邊上,則可以畫出的等腰三角形的個(gè)數(shù)最多為(  )

A.4個(gè)B.5個(gè)C.6個(gè)D.7個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,回答問題
在邊長為1的正方形ABCD中,E是AB的中點(diǎn),CF⊥DE,F(xiàn)為垂足.

(1)△CDF與△DEA是否相似?說明理由;
(2)求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線ay2x+4分別與x、y軸交于點(diǎn)A、C.將直線a豎直向下平移7個(gè)單位后得到直線b,直線b交直線ADyx+2于點(diǎn)E

1)若點(diǎn)Q為直線x軸上一動(dòng)點(diǎn),是否存在點(diǎn)Q,使△QDE的周長最小,若存在,求△QDE周長的最小值及點(diǎn)Q的坐標(biāo):

2)已知點(diǎn)M是第一象限直線a上的任意一點(diǎn),過點(diǎn)M作直線cx軸,交直線b于點(diǎn)N,H為直線AD上任意一點(diǎn),是否存在點(diǎn)M,使得△MNH成為等腰直角三角形?若存在,請(qǐng)直接寫出點(diǎn)H的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為4,P是對(duì)角線BD上一點(diǎn),PEBC于點(diǎn)E,PFCD于點(diǎn)F,連接APEF.給出下列結(jié)論:①PDDF;②四邊形PECF的周長為8;③APD一定是等腰三角形;④APEF.其中正確結(jié)論的序號(hào)為(

A.①②④B.①②C.①④D.①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案