精英家教網 > 初中數學 > 題目詳情
關于x的一元二次方程ax2+bx+c=0(a≠0)沒有實數根;甲同學看錯了二次項系數,解的方程的兩根為2、4;乙同學看錯了某一項的系數符號,解得方程的兩根為-1、4;求:
2a+3ca
的值是多少?
分析:先利用兩根分別表示出錯誤的方程為:甲,設k(x-2)(x-4)=0得kx2-6kx+8k=0;乙,設p(x+1)(x-4)=0得px2-3px-4p=0,無論怎么錯誤,甲和乙的方程里面常量相同,就是8k=-4p,即
k
p
=-
1
2
,把第一個方程中的一次項和常數項,第二個方程中的二次項代入所求代數式中化簡后可解.
解答:解:對于甲:設k(x-2)(x-4)=0
得kx2-6kx+8k=0.
對于乙:設p(x+1)(x-4)=0
得px2-3px-4p=0
從這兩個方程可看出:無論怎么錯誤,甲和乙的方程里面常量相等,
所以8k=-4p,即
k
p
=-
1
2
,p=-2k,
∴a=-2k,b=-6k,c=8k,
2a+3c
a
=
-4k+24k
-2k
=-10.
點評:本題考查了根與系數的關系及根的判別式,難度較大,關鍵是掌握利用方程的兩根來表示出兩個錯誤的方程,并通過比較后,得出初步判斷為無論怎么錯誤,甲和乙的方程里面常量只是符號相反這個關鍵的等量關系,然后通過等量代換求解.此題要求十分熟悉一元二次方程的特點,以及方程之間的關系.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•北侖區(qū)二模)若關于x的一元二次方程a(x+m)2=3兩個實根為x1=-1,x2=3,則拋物線y=a(x+m-2)2-3與x軸的交點橫坐標分別是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

已知方程(m-2)xm2-5m-8+(m-3)x+5=0是關于x的一元二次方程,則m=
65
2
65
2

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•沈陽)若關于x的一元二次方程x2+4x+a=0有兩個不相等的實數根,則a的取值范圍是
a<4
a<4

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•蘭州一模)若x1,x2是關于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根,則方程的兩個根x1,x2和系數a,b,c有如下關系:x1+x2=-
b
a
,x1•x2=
c
a
,把它們稱為一元二次方程根與系數關系定理,請利用此定理解答一下問題:
已知x1,x2是一員二次方程(m-3)x2+2mx+m=0的兩個實數根.
(1)是否存在實數m,使-x1+x1x2=4+x2成立?若存在,求出m的值,若不存在,請你說明理由;
(2)若|x1-x2|=
3
,求m的值和此時方程的兩根.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•瀘州)若關于x的一元二次方程kx2-2x-1=0有兩個不相等的實數根,則實數k的取值范圍是( 。

查看答案和解析>>

同步練習冊答案