【題目】如圖,在邊長為4的正方形ABCD中,對角線AC,BD相交于點O,點E是AD邊上一點,連接CE,把△CDE沿CE翻折,得到△CPE,EP交AC于點F,CP交BD于點G,連接PO,若PO∥BC,則四邊形OFPG的面積是 .
【答案】8﹣4
【解析】解:如圖所示,過P作PM⊥AO于M,作PN⊥BO于N,延長PO交CD于H,
∵PO∥BC,BC⊥CD,
∴PH⊥CD,
又∵△CDO是等腰直角三角形,
∴OH= CD=2=CH,OH平分∠COD,
由折疊可得,CP=CD=4,
∴Rt△PCH中,PH= =2 ,
∴PO=PH﹣OH=2 ﹣2,
∵PO平分∠AOB,PM⊥AO,PN⊥BO,
∴PM=PN,
矩形PMON是正方形,
∴正方形PMON的面積= OP2= (2 ﹣2)2=8﹣4 ,
∵∠FPG=∠MON=90°,
∴∠FPM=∠GPN,
在△PMF和△PNG中,
,
∴△PMF≌△PNG(ASA),
∴S△PMF=S△PNG,
∴S四邊形OFPG=S正方形PMON,
∴四邊形OFPG的面積是8﹣4 ,
所以答案是:8﹣4 .
【考點精析】利用等腰直角三角形和勾股定理的概念對題目進行判斷即可得到答案,需要熟知等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t(分)之間的關系如圖所示,下列結(jié)論:
①甲步行的速度為60米/分;
②乙走完全程用了32分鐘;
③乙用16分鐘追上甲;
④乙到達終點時,甲離終點還有300米
其中正確的結(jié)論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù) 的圖象與x軸交于A,B兩點(點A在點B的左邊),與y軸交于點C,頂點為D.
(1)求以A,B,C,D為頂點的四邊形的面積;
(2)在拋物線上是否存在點P,使得△ABP的面積是△ABC的面積的2倍?若存在,求出點P的坐標;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,將一塊等腰直角三角形的直角頂點放在斜邊的中點處,將三角板繞點旋轉(zhuǎn),三角板的兩直角邊分別交射線、于、兩點.如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況.
(1)觀察圖①,當三角板繞點旋轉(zhuǎn)到時,我們發(fā)現(xiàn):__________.(選填“”、“”或“”)
(2)當三角板繞點旋轉(zhuǎn)到圖②所示位置時,判斷(1)題中與之間的大小關系還存在嗎?請你結(jié)合圖②說明理由.
(3)三角板繞點旋轉(zhuǎn),是否能成為等腰三角形?若能,指出所有情況(那寫出為等腰三角形時的長);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從邊長為a的正方形中剪掉一個邊長為b的正方形(如圖1),然后將剩余部分拼成一個長方形(如圖2).
(1)圖1中陰影部分面積為______,圖2中陰影部分面積為_____,對照兩個圖形的面積可以驗證________公式(填公式名稱)請寫出這個乘法公式________.
(2)應用(1)中的公式,完成下列各題:
①已知x2﹣4y2=15,x+2y=3,求x﹣2y的值;
②計算:(2+1)(22+1)(24+1)(28+1)……(264+1)+1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司有、兩種型號的客車共20輛,它們的載客量、每天的租金如下表所示.已知在20輛客車都坐滿的情況下,共載客720人.
A型號客車 | B型號客車 | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 600 | 450 |
(1)求、兩種型號的客車各有多少輛?
(2)某中學計劃租用、兩種型號的客車共8輛,同時送七年級師生到沙家浜參加社會實踐活動,已知該中學租車的總費用不超過4600元. 求最多能租用多少輛A型號客車?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1和∠2互為補角,∠A=∠D,求證:∠B=∠C.
請在下面的證明過程的括號內(nèi),填寫依據(jù).
證明:∵∠1與∠CGD是對頂角,
∴∠1=∠CGD( )
∵∠1+∠2=180°(已知)
∴∠2+∠CGD=180°(等量代換)
∴AE//FD( )
∴∠AEC=∠D( )
∵∠A=∠D(已知)
∴∠AEC=∠A( )
∴AB//CD( )
∴∠B=∠C( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù)y= 的圖象經(jīng)過點(﹣ ,2),則函數(shù)y=kx﹣2的圖象不經(jīng)過第幾象限( )
A.一
B.二
C.三
D.四
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=10,AD=16,∠A=60°,P是射線AD上一點,連接PB,沿PB將△APB折疊,得到△A′PB.
(1)如圖2所示,當PA′⊥BC時,求線段PA的長度.
(2)當∠DPA′=10°時,求∠APB的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com