【題目】某學(xué)習(xí)小組由3名男生和1名女生組成,在一次合作學(xué)習(xí)后,開始進行成果展示.
(1)如果隨機抽取1名同學(xué)單獨展示,那么女生展示的概率為
(2)如果隨機抽取2名同學(xué)共同展示,求同為男生的概率.

【答案】
(1)
(2)解:列表如下:

﹣﹣﹣

(男,男)

(男,男)

(女,男)

(男,男)

﹣﹣﹣

(男,男)

(女,男)

(男,男)

(男,男)

﹣﹣﹣

(女,男)

(男,女)

(男,女)

(男,女)

﹣﹣﹣

所有等可能的情況有12種,其中同為男生的情況有6種,

則P= =


【解析】解:(1)如果隨機抽取1名同學(xué)單獨展示,那么女生展示的概率為 ; (1)4名學(xué)生中女生1名,求出所求概率即可;(2)列表得出所有等可能的情況數(shù),找出同為男生的情況數(shù),即可求出所求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩個二次函數(shù)y1=x2+bx+c和y2=x2+m.對于函數(shù)y1 , 當(dāng)x=2時,該函數(shù)取最小值.
(1)求b的值;
(2)若函數(shù)y1的圖象與坐標軸只有2個不同的公共點,求這兩個公共點間的距離;
(3)若函數(shù)y1、y2的圖象都經(jīng)過點(1,﹣2),過點(0,a﹣3)(a為實數(shù))作x軸的平行線,與函數(shù)y1、y2的圖象共有4個不同的交點,這4個交點的橫坐標分別是x1、x2、x3、x4 , 且x1<x2<x3<x4 , 求x4﹣x3+x2﹣x1的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a1 , a2 , …,a2014是從1,0,﹣1這三個數(shù)中取值的一列數(shù),若a1+a2+…+a2014=69,(a1+1)2+(a2+1)2+…+(a2014+1)2=4001,則a1 , a2 , …,a2014中為0的個數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點O作一條直線分別交DA、BC的延長線于點E、F,連接BE、DF.
(1)求證:四邊形BFDE是平行四邊形;
(2)若EF⊥AB,垂足為M,tan∠MBO= ,求EM:MF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形紙片ABC中,AB=AC,∠A=50°,折疊該紙片,使點A落在點B處,折痕為DE,則∠CBE=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB=30°,OC平分∠AOB,在OA上有一點M,OM=10 cm,現(xiàn)要在OC,OA上分別找點Q,N,使QM+QN最小,則其最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某通道的側(cè)面示意圖,已知AB∥CD∥EF,AM∥BC∥DE,AB=CD=EF,∠AMF=90°,∠BAM=30°,AB=6m.

(1)求FM的長;
(2)連接AF,若sin∠FAM= ,求AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標系xOy中,點A、B分別在函數(shù)y1= (x>0)與y2=﹣ (x<0)的圖象上,A、B的橫坐標分別為
a、b.

(1)若AB∥x軸,求△OAB的面積;
(2)若△OAB是以AB為底邊的等腰三角形,且a+b≠0,求ab的值;
(3)作邊長為3的正方形ACDE,使AC∥x軸,點D在點A的左上方,那么,對大于或等于4的任意實數(shù)a,CD邊與函數(shù)y1= (x>0)的圖象都有交點,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,AD與過點C的切線互相垂直,垂足為點D,AD交⊙O于點E,連接CE,CB.
(1)求證:CE=CB;
(2)若AC=2 ,CE= ,求AE的長.

查看答案和解析>>

同步練習(xí)冊答案