【題目】在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D為AC的中點(diǎn).
(1)如圖1,E為線段DC上任意一點(diǎn),將線段DE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到線段DF,連接CF,過(guò)點(diǎn)F作FH⊥FC,交直線AB于點(diǎn)H.判斷FH與FC的數(shù)量關(guān)系并加以證明;

(2)如圖2,若E為線段DC的延長(zhǎng)線上任意一點(diǎn),(1)中的其他條件不變,你在(1)中得出的結(jié)論是否發(fā)生改變,直接寫出你的結(jié)論,不必證明.

【答案】
(1)解:FH與FC的數(shù)量關(guān)系是:FH=FC.

證明如下:延長(zhǎng)DF交AB于點(diǎn)G,

由題意,知∠EDF=∠ACB=90°,DE=DF,

∴DG∥CB,

∵點(diǎn)D為AC的中點(diǎn),

∴點(diǎn)G為AB的中點(diǎn),且 ,

∴DG為△ABC的中位線,

∵AC=BC,

∴DC=DG,

∴DC﹣DE=DG﹣DF,

即EC=FG.

∵∠EDF=90°,F(xiàn)H⊥FC,

∴∠1+∠CFD=90°,∠2+∠CFD=90°,

∴∠1=∠2.

∵△DEF與△ADG都是等腰直角三角形,

∴∠DEF=∠DGA=45°,

∴∠CEF=∠FGH=135°,

∴△CEF≌△FGH,

∴CF=FH


(2)解:FH與FC仍然相等.

理由:由題意可得出:DF=DE,

∴∠DFE=∠DEF=45°,

∵AC=BC,

∴∠A=∠CBA=45°,

∵DF∥BC,

∴∠CBA=∠FGB=45°,

∴∠FGH=∠CEF=45°,

∵點(diǎn)D為AC的中點(diǎn),DF∥BC,

∴DG= BC,DC= AC,

∴DG=DC,

∴EC=GF,

∵∠DFC=∠FCB,

∴∠GFH=∠FCE,

在△FCE和△HFG中

,

∴△FCE≌△HFG(ASA),

∴HF=FC


【解析】(1)延長(zhǎng)DF交AB于點(diǎn)G,根據(jù)三角形中位線的判定得出點(diǎn)G為AB的中點(diǎn),根據(jù)中位線的性質(zhì)及已知條件AC=BC,得出DC=DG,從而EC=FG,易證∠1=∠2=90°﹣∠DFC,∠CEF=∠FGH=135°,由AAS證出△CEF≌△FGH.∴CF=FH.(2)通過(guò)證明△CEF≌△FGH(ASA)得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在正方形ABCD中,E是線段AB上一動(dòng)點(diǎn),點(diǎn)F在AD的延長(zhǎng)線上運(yùn)動(dòng),且DF=BE.

(1)求證:CE=CF.
(2)當(dāng)點(diǎn)E在AB上運(yùn)動(dòng)時(shí),在AD上取一點(diǎn)G,使∠GCE=45°,試判斷BE、EG、GD三條線段的數(shù)量關(guān)系,并加以證明.
(3)若連接圖①中的BD,分別交CE、CG于點(diǎn)M、N,得圖②,試根據(jù)(2)中的結(jié)論說(shuō)明以線段BM、MN、DN為三邊構(gòu)成的是一個(gè)什么形狀的三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知|x|=2,|y|=3,且xy<0,x+y>0,則x﹣y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某區(qū)招聘音樂(lè)教師采用筆試、專業(yè)技能測(cè)試、說(shuō)課三種形式進(jìn)行選拔,這三項(xiàng)的成績(jī)滿分均為100分,并按2:3:5的比例計(jì)算總分,最后,按照成績(jī)的排序從高到低依次錄。搮^(qū)要招聘2名音樂(lè)教師,通過(guò)筆試、專業(yè)技能測(cè)試篩選出前6名選手進(jìn)入說(shuō)課環(huán)節(jié),這6名選手的各項(xiàng)成績(jī)見(jiàn)表:

序號(hào)

1

2

3

4

5

6

筆試成績(jī)

66

90

86

64

66

84

專業(yè)技能測(cè)試成績(jī)

95

92

93

80

88

92

說(shuō)課成績(jī)

85

78

86

88

94

85

(1)筆試成績(jī)的平均數(shù)是      ;

(2)寫出說(shuō)課成績(jī)的中位數(shù)為      ,眾數(shù)為      ;

(3)已知序號(hào)為1,2,3,4號(hào)選手的總分成績(jī)分別為84.2分,84.6分,88.1分,80.8分,請(qǐng)你通過(guò)計(jì)算判斷哪兩位選手將被錄用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知銳角△ABC中,AB、AC邊的中垂線交于點(diǎn)O

(1)若∠A=α(0°<α<90°),求∠BOC;
(2)試判斷∠ABO+∠ACB是否為定值;若是,求出定值,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=3x2的開(kāi)口方向是(
A.向上
B.向下
C.向左
D.向右

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)x、y滿足關(guān)系式 +|y2﹣9|=0.
(1)求x、y的值;
(2)判斷 是無(wú)理數(shù)還是無(wú)理數(shù)?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)角的余角是30°,那么這個(gè)角是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.那么,三角形的一個(gè)內(nèi)角與它不相鄰的兩個(gè)外角的和之間存在怎樣的數(shù)量關(guān)系呢?
(1)如圖1,∠DBC與∠ECB分別為△ABC的兩個(gè)外角,試探究∠A與∠DBC+∠ECB之間存在怎樣的數(shù)量關(guān)系?為什么?
(2)如圖2,在△ABC紙片中剪去△CED,得到四邊形ABDE,若∠1+∠2=230°,則剪掉的∠C=;
(3)小明聯(lián)想到了曾經(jīng)解決的一個(gè)問(wèn)題:如圖3,在△ABC中,BP、CP分別平分外角∠DBC、∠ECB,∠P與∠A有何數(shù)量關(guān)系?請(qǐng)直接寫出答案
(4)如圖4,在四邊形ABCD中,BP、CP分別平分外角∠EBC、∠FCB,∠P與∠A、∠D有何數(shù)量關(guān)系?為什么?(若需要利用上面的結(jié)論說(shuō)明,可直接使用,不需說(shuō)明理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案