等腰梯形的下底是上底的3倍,高與上底相等,這個(gè)梯形的腰與下底所夾角的度數(shù)為_(kāi)_____.
過(guò)點(diǎn)A作AE⊥DC于點(diǎn)E,過(guò)點(diǎn)B作BF⊥BC于點(diǎn)F
∵四邊形ABCD是等腰梯形,
∴DE=CF,
又∵CD=3AB,
∴DE=CF=EF=AB,
∵AE=AB,
∴DE=AE,
∴∠D=45°.
故答案為:45°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在梯形ABCD中,∠B=90°,AB=14cm,AD=18cm,BC=21cm,點(diǎn)P從點(diǎn)A開(kāi)始沿AD邊向點(diǎn)D以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)C開(kāi)始沿CB向點(diǎn)B以2cm/s的速度移動(dòng),如果點(diǎn)P、Q分別從兩點(diǎn)同時(shí)出發(fā),當(dāng)其中某一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
(1)t為何值時(shí),梯形PBQD是平行四邊形?
(2)t為何值時(shí),梯形PBQD是等腰梯形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,ABCD,∠A=60°,∠B=30°,AD=CD=6,則AB的長(zhǎng)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,ADBC,∠B=90°,AB=3cm,AD=8cm,BC=12cm,點(diǎn)P從點(diǎn)B開(kāi)始沿折線B?C?D?A以4cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)D開(kāi)始沿DA邊向A點(diǎn)以1cm/s的速度移動(dòng).若點(diǎn)P、Q分別從B、D同時(shí)出發(fā),當(dāng)其中一個(gè)點(diǎn)到達(dá)點(diǎn)A時(shí),另一點(diǎn)也隨之停止移動(dòng).設(shè)移動(dòng)時(shí)間為t(s).
求當(dāng)t為何值時(shí):
(1)四邊形PCDQ為平行四邊形;
(2)四邊形PCDQ為等腰梯形;
(3)PQ=3cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知一個(gè)梯形的兩底長(zhǎng)分別是4和8,一腰長(zhǎng)為5,若另一腰長(zhǎng)為x,則x的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,等腰梯形ABCD中,ADBC,AB=CD,AD=10cm,BC=30cm,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AD邊向點(diǎn)以每秒1cm的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿CB邊向點(diǎn)B以每秒3cm的速度運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)t為何值時(shí),四邊形ABQP是平行四邊形?
(2)四邊形ABQP能成為等腰梯形嗎?如果能,求出t的值;如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖是一塊梯形鐵片的殘余部分,量出∠A=120°,∠B=105°,AB=20cm,并且還知道原來(lái)梯形鐵片的另一底邊比AB長(zhǎng)10cm.
(1)求原來(lái)梯形鐵片的∠D和∠C的度數(shù).
(2)求原來(lái)梯形鐵片的另外三條邊的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,在梯形ABCD中,ADBC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在直角梯形ABCD中,ADBC,∠BAD=90°,AB=BC,E為AB邊上一點(diǎn),∠BCE=15°,AE=AD,DE交對(duì)角線AC于點(diǎn)H,連接BH,有下列結(jié)論:
①△ACD≌△ACE,②△CDE為等邊三角形,③AC⊥ED,④
EH
BE
=2

其中結(jié)論正確的是(  )
A.①②B.①②③C.③④D.①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案