【題目】已知拋物線yax2+bx+ca≠0)與x軸交于A,B兩點,與y軸交于點C,點B和點C的坐標分別為(3,0)、(0,﹣3),拋物線的對稱軸為x1,D為拋物線的頂點.

1)求拋物線的解析式.

2)點E為線段BC上一動點,過點Ex軸的垂線,與拋物線交于點F,求四邊形ACFB面積的最大值,以及此時點E的坐標.

3)拋物線的對稱軸上是否存在一點P,使△PCD為等腰三角形?若存在,寫出點P點的坐標;若不存在,說明理由.

【答案】1yx22x3;(2)四邊形ACFB面積的最大值為,此時點E的坐標為(,﹣);(3)存在滿足條件的P點,其坐標為(1,﹣3)或(1,﹣2)或(1,﹣4+)或(1,﹣4

【解析】

1)由B、C的坐標,結合拋物線對稱軸,根據(jù)待定系數(shù)法可求得拋物線解析式;

2)由B、C坐標可求得直線BC解析式,設出F點坐標,則可表示出E點坐標,從而可求得EF的長,則可表示出CBF的面積,從而可表示出四邊形ACFB的面積,再利用二次函數(shù)的性質可求其最大值,進而求出E點的坐標;

3)由拋物線解析式可求得D點坐標,可設P點坐標為(1,t),則可表示出PC、PDCD的長,由等腰三角形可分PCPD、PCCDPDCD三種情況,分別得到關于t的方程,即可求得P點坐標.

解:(1)∵點B和點C的坐標分別為(30)(0,﹣3),拋物線的對稱軸為x1

,解得

∴拋物線解析式為yx22x3;

2))設直線BC解析式為ykx+b,

代入B3,0),C0,﹣3)得,

解得:

∴直線BC解析式為yx3,

E點在直線BC上,F點在拋物線上,

∴設Fx,x22x3),Ex,x3),

∵點F在線段BC下方,

EFx3﹣(x22x3)=﹣x2+3x,

SBCFEFOB×3(﹣x2+3x)=﹣x2+x=﹣x2+

又∵SABCABOC×4×36,

S四邊形ACFBSABC+SBCF6x2+=﹣x2+,

∵﹣0,

∴當x時,S四邊形ACFB有最大值,最大值為,此時E點坐標為(,﹣),

綜上可得:四邊形ACFB面積的最大值為,此時點E的坐標為(,﹣);

3)∵yx22x3=(x124,

D1,﹣4),且C0,﹣3),

P點為拋物線對稱軸上的一點,

∴設P1,t),

PC,PD|t+4|,CD,

∵△PCD為等腰三角形,

∴分PCPD、PCCDPDCD三種情況,

①當PCPD時,則|t+4|,解得t=﹣3,

∴此時P點坐標為(1,﹣3);

②當PCCD時,則,解得t=﹣2t=﹣4(與D點重合,舍去),

∴此時P點坐標為(1,﹣2);

③當PDCD時,則|t+4|,解得t=﹣4+t=﹣4

∴此時P點坐標為(1,﹣4+)或(1,﹣4);

綜上可知,存在滿足條件的P點,其坐標為(1,﹣3)或(1,﹣2)或(1,﹣4+)或(1,﹣4).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線軸交于兩點,與軸交于點,,矩形的邊,延長交拋物線于點.

(1)求拋物線的表達式;

(2)如圖2,點是直線上方拋物線上的一個動點,過點軸的平行線交直線于點,作,垂足為.設的長為,點的橫坐標為,求的函數(shù)關系是(不必寫出的取值范圍),并求出的最大值;

(3)如果點是拋物線對稱軸上的一點,拋物線上是否存在點,使得以為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋子中裝有大小、形狀完全相同的三個小球,上面分別標有1,2,3三個數(shù)字.

1)從中隨機摸出一個球,求這個球上數(shù)字是奇數(shù)的概率是 ;

2)從中先隨機摸出一個球記下球上數(shù)字,然后放回洗勻,接著再隨機摸出一個,求這兩個球上的數(shù)都是奇數(shù)的概率(用列表或樹狀圖方法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,是⊙的直徑,為⊙外一點,,垂足為,弦,且,

(1)求證:是⊙的切線;

(2)求⊙的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A是拋物線對稱軸上的一點,連接OA,以A為旋轉中心將AO逆時針旋轉90°得到AO′,當O′恰好落在拋物線上時,點A的坐標為______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋子中裝有除顏色外其余均相同的m個小球,其中 5 個黑球, 從袋中隨機摸出一球,記下其顏色,這稱為依次摸球試驗,之后把它放回袋 中,攪勻后,再繼續(xù)摸出一球以下是利用計算機模擬的摸球試驗次數(shù)與摸出黑球次數(shù)的列表:

摸球試驗次數(shù)

100

1000

5000

10000

50000

100000

摸出黑球次數(shù)

46

487

2506

5008

24996

50007

根據(jù)列表,可以估計出 m 的值是(

A. 5 B. 10 C. 15 D. 20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,邊上一點.

1)當時,直接寫出  ,  

2)如圖1,當,時,連并延長交延長線于,求證:

3)如圖2,連,當時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(8分)如圖,已知O是坐標原點,B、C兩點的坐標分別為(3,-1)、(2,1)。

(1)以O點為位似中心在y軸的左側將OBC放大到兩倍畫出圖形。

(2)寫出B、C兩點的對應點B、C的坐標;

(3)如果OBC內部一點M的坐標為(x,y),寫出M的對應點M的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于A2,1),B兩點.

1)求出反比例函數(shù)與一次函數(shù)的表達式;

2)請直接寫出B點的坐標,并指出使反比例函數(shù)值大于一次函數(shù)值的x的取值范圍.

查看答案和解析>>

同步練習冊答案