【題目】閱讀下列一段文字,然后回答下列問題:

已知平面內(nèi)兩點(diǎn)P1(x1,y1),P2(x2,y2),其兩點(diǎn)間的距離。例如:已知P(3,1)Q(1,-2),則這兩點(diǎn)間的距離.特別地,如果兩點(diǎn)M(x1,y1),N(x2,y2),所在的直線與坐標(biāo)軸重合或平行于坐標(biāo)軸或者垂直于坐標(biāo)軸,那么這兩點(diǎn)間的距離公式可簡(jiǎn)化為

(1)已知A(2,3),B(-1-2),則A,B兩點(diǎn)間的距離為_________;

(2)已知MN在平行于y軸的直線上,點(diǎn)M的縱坐標(biāo)為-2,點(diǎn)N的縱坐標(biāo)為3,則M,N兩點(diǎn)間的距離為_________;

(3)在平面直角坐標(biāo)系中,已知A(0,4),B(4,2),在x軸上找點(diǎn)P,使PA+PB的長(zhǎng)度最短,求出點(diǎn)P的坐標(biāo)及PA+PB的最短長(zhǎng)度.

【答案】(1);(2)5(3) PA+PB的長(zhǎng)度最短時(shí),點(diǎn)P的坐標(biāo)為(,0),PA+PB的最短長(zhǎng)度為.

【解析】

1)直接利用兩點(diǎn)之間距離公式直接求出即可;
2)根據(jù)題意列式計(jì)算即可;
3)利用軸對(duì)稱求最短路線方法得出P點(diǎn)位置,進(jìn)而求出PA+PB的最小值.

(1) 1)∵A2,3),B-1,-2),
A,B兩點(diǎn)間的距離為:

(2) M,N在平行于y軸的直線上,點(diǎn)M的縱坐標(biāo)為-2,點(diǎn)N的縱坐標(biāo)為3,
M,N兩點(diǎn)間的距離為3--2=5;

(3)如圖,作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A′,連接A′Bx軸交于點(diǎn)P,此時(shí)PA+PB最短

設(shè)A′B的解析式為y=kx+b

A′(0,-4),B(4,2)代入y=kx+b

解得

∴直線設(shè)A′B的解析式為

y=0

P(0,).

PA′=PA

PA+PB=PA′+PB=A′B=

PA+PB的長(zhǎng)度最短時(shí),點(diǎn)P的坐標(biāo)為(,0),PA+PB的最短長(zhǎng)度為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【題目】如圖,某數(shù)學(xué)興趣小組想測(cè)量一棵樹CD的高度,他們先在點(diǎn)A處測(cè)得樹頂C的仰角為30°,然后沿AD方向前行10m,到達(dá)B點(diǎn),在B處測(cè)得樹頂C的仰角高度為60°(A、B、D三點(diǎn)在同一直線上).請(qǐng)你根據(jù)他們測(cè)量數(shù)據(jù)計(jì)算這棵樹CD的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在讀書月活動(dòng)中,學(xué)校準(zhǔn)備購(gòu)買一批課外讀物.為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個(gè)類別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根

據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:

(1)本次調(diào)查中,一共調(diào)查了   名同學(xué);

(2)條形統(tǒng)計(jì)圖中,m=   ,n=   

(3)扇形統(tǒng)計(jì)圖中,藝術(shù)類讀物所在扇形的圓心角是   度;

(4)學(xué)校計(jì)劃購(gòu)買課外讀物6000冊(cè),請(qǐng)根據(jù)樣本數(shù)據(jù),估計(jì)學(xué)校購(gòu)買其他類讀物多少冊(cè)比較合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形ABCD的兩條邊在坐標(biāo)軸上,點(diǎn)D與坐標(biāo)原點(diǎn)O重合,且AD=8,AB=6.如圖2,矩形ABCD沿OB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),同時(shí)點(diǎn)PA點(diǎn)出發(fā)也以每秒1個(gè)單位長(zhǎng)度的速度沿矩形ABCD的邊AB經(jīng)過點(diǎn)B向點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),矩形ABCD和點(diǎn)P同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

1)當(dāng)t=5時(shí),請(qǐng)直接寫出點(diǎn)D、點(diǎn)P的坐標(biāo);

2)當(dāng)點(diǎn)P在線段AB或線段BC上運(yùn)動(dòng)時(shí),求出△PBD的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出相應(yīng)t的取值范圍;

3)點(diǎn)P在線段AB或線段BC上運(yùn)動(dòng)時(shí),作PE⊥x軸,垂足為點(diǎn)E,當(dāng)△PEO△BCD相似時(shí),求出相應(yīng)的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)戶種植一種經(jīng)濟(jì)作物,總用水量y(米3)與種植時(shí)間x(天)之間的函數(shù)關(guān)系式如圖所示.

(1)第20天的總用水量為多少米3?

(2)當(dāng)x≥20時(shí),求yx之間的函數(shù)關(guān)系式;

(3)種植時(shí)間為多少天時(shí),總用水量達(dá)到70003?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖,在平面直角坐標(biāo)系中,直線y=x-3與坐標(biāo)軸交于A,B兩點(diǎn).

(1)A,B兩點(diǎn)的坐標(biāo);

(2)AB為邊在第四象限內(nèi)作等邊三角形ABC,求ABC的面積;

(3)在平面內(nèi)是否存在點(diǎn)M,使得以M,O,AB為頂點(diǎn)的四邊形是平行四邊形,若存在,直接寫出M點(diǎn)的坐標(biāo):若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】感知與填空:如圖①,直線,求證:.

閱讀下面的解答過程,并填上適當(dāng)?shù)睦碛桑?/span>

:過點(diǎn)作直線,

(已知),,

,

應(yīng)用與拓展:如圖②,直線,若.

方法與實(shí)踐:如圖③,直線,若, .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時(shí)把手端點(diǎn)A、出水口B和點(diǎn)落水點(diǎn)C在同一直線上,洗手盆及水龍頭的相關(guān)數(shù)據(jù)如圖2.(參考數(shù)據(jù):sin37°=,cos37°=,tan37°=

求把手端點(diǎn)A到BD的距離;

求CH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,已知∠AOC=75°,∠BOE :∠DOE=2:3

1)求∠BOE的度數(shù);

2)若OF平分∠AOE,∠AOC與∠AOF相等嗎?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案