如圖,在△ABC中,∠BCA=90°,以BC為直徑的⊙O交AB于點P,Q是AC的中點.判斷直線PQ與⊙O的位置關(guān)系,并說明理由.
直線PQ與⊙O的位置關(guān)系是:相切.
其理由如下:
①連接OP、CP.
∵BC是直徑,
∴CP⊥AB,
在Rt△APC中,Q為斜邊AC的中點;
∴PQ=CQ=
1
2
AC(直角三角形斜邊中線等于斜邊一半),
∴∠QPC=∠QCP;
又OP=OC,
∴∠OPC=∠OCP,
又∠BCA=90°,
∴∠OPQ=90°且P在⊙O上,
∴直線PQ與⊙O的位置關(guān)系是:相切.

②用三角形全等或者角的和(差)也可證明.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點B坐標(biāo)為(7,9),⊙B的半徑為3,AB⊥y軸,垂足為A,點P從A點出發(fā)沿射線AB運動,速度為每秒一個單位,設(shè)運動的時間t(s):
(1)當(dāng)點P運動到圓上時,求t值,并直接寫出此時P點坐標(biāo);
(2)若P運動12s時,判斷直線OP與⊙B的位置關(guān)系,并說明你的理由;
(3)點P從A點出發(fā)沿射線AB運動的過程中,請?zhí)骄恐本OP與⊙B有哪幾種位置關(guān)系,并直接寫出相應(yīng)的運動時間t的取值范圍.(這一小題不要求寫出解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,AB、AC分別切⊙O于B、C兩點,D是⊙O上一點,∠D=40°,則∠BAO=(  )
A.40°B.50°C.100°D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PA、PB是⊙O的切線,A、B為切點,C是劣弧AB上的一點,∠P=50°,∠C=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在直角梯形ABCD中,∠D=∠C=90°,AB=4,BC=6,AD=8,點P、Q同時從A點出發(fā),分別做勻速運動,其中點P沿AB、BC向終點C運動,速度為每秒2個單位,點Q沿AD向終點D運動,速度為每秒1個單位,當(dāng)這兩點中有一個點到達(dá)自己的終點時,另一個點也停止運動,設(shè)這兩個點從出發(fā)運動了t秒.
(1)動點P與Q哪一點先到達(dá)自己的終點?此時t為何值;
(2)當(dāng)O<t<2時,寫出△PQA的面積S與時間t的函數(shù)關(guān)系式;
(3)以PQ為直徑的圓能否與CD相切?若有可能,求出t的值或t的取值范圍;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙O的半徑為4,CD是⊙O的直徑,AC為⊙O的弦,B為CD延長線上的一點,∠ABC=30°,且AB=AC.
(1)求證:AB為⊙O的切線;
(2)求弦AC的長;
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

兩個同心圓的半徑分別為3cm和4cm,大圓的弦BC與小圓相切,則BC=______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在⊙O中,AB是直徑,AD是弦,∠ADE=60°,∠C=30°.
(1)求證:CD是⊙O的切線;
(2)若BC=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線AB經(jīng)過⊙O上的點C,OA=OB,CA=CB.
(1)直線AB是否與⊙O相切?為什么?
(2)如果⊙O的直徑為4cm,AB=8cm,求OA的長.

查看答案和解析>>

同步練習(xí)冊答案