精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB是⊙O的直徑,CD是⊙O的切線,切點為D,CD與AB的延長線交于點C,∠A=30°,給出下面3個結論:①AD=CD;②BD=BC;③AB=2BC,其中正確結論的個數是(
A.3
B.2
C.1
D.0

【答案】A
【解析】解:如圖,連接OD, ∵CD是⊙O的切線,
∴CD⊥OD,
∴∠ODC=90°,
又∵∠A=30°,
∴∠ABD=60°,
∴△OBD是等邊三角形,
∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.
∴∠C=∠BDC=30°,
∴BD=BC,②成立;
∴AB=2BC,③成立;
∴∠A=∠C,
∴DA=DC,①成立;
綜上所述,①②③均成立,
故答案選:A.

連接OD,CD是⊙O的切線,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等邊三角形,∠C=∠BDC=30°,再結合在直角三角形中300所對的直角邊等于斜邊的一半,繼而得到結論①②③成立.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】解方程和不等式組:
(1) + =1
(2)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,PD切⊙O于點C,交AB的延長線于點D,且∠D=2∠CAD.
(1)求∠D的度數;
(2)若CD=2,求BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,點P為AB邊上一動點,若△PAD與△PBC是相似三角形,則滿足條件的點P的個數是(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,點D,E,F分別是AB,BC,CA的中點,AH是邊BC上的高.
(1)求證:四邊形ADEF是平行四邊形;
(2)求證:∠DHF=∠DEF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】三個小球分別標有﹣2,0,1三個數,這三個球除了標的數不同外,其余均相同,將小球放入一個不透明的布袋中攪勻.
(1)從布袋中任意摸出一個小球,將小球上所標之數記下,然后將小球放回袋中,攪勻后再任意摸出一個小球,再記下小球上所標之數,求兩次記下之數的和大于0的概率.(請用“畫樹狀圖”或“列表”等方法給出分析過程,并求出結果)
(2)從布袋中任意摸出一個小球,將小球上所標之數記下,然后將小球放回袋中,攪勻后再任意摸出一個小球,將小球上所標之數再記下,…,這樣一共摸了13次.若記下的13個數之和等于﹣4,平方和等于14.求:這13次摸球中,摸到球上所標之數是0的次數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,A、B、C、D依次為一直線上4個點,BC=2,△BCE為等邊三角形,⊙O過A、D、E3點,且∠AOD=120°.設AB=x,CD=y,則y與x的函數關系式為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知⊙O上依次有A、B、C、D四個點, = ,連接AB、AD、BD,弦AB不經過圓心O,延長AB到E,使BE=AB,連接EC,F是EC的中點,連接BF.
(1)若⊙O的半徑為3,∠DAB=120°,求劣弧 的長;
(2)求證:BF= BD;
(3)設G是BD的中點,探索:在⊙O上是否存在點P(不同于點B),使得PG=PF?并說明PB與AE的位置關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列算式運算結果正確的是(
A.(2x52=2x10
B.(﹣3)2=
C.(a+1)2=a2+1
D.a﹣(a﹣b)=﹣b

查看答案和解析>>

同步練習冊答案