【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長(zhǎng)線上的一點(diǎn),BE=BA,過(guò)E作EF⊥AB,F(xiàn)為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結(jié)論有________(填序號(hào)).
【答案】①②④
【解析】
易證△ABD≌△EBC,可得∠BCE=∠BDA,AD=EC可得①②正確,再根據(jù)角平分線的性質(zhì)可求得∠DAE=∠DCE,即AD=AE=EC,根據(jù)AD=AE=EC可求得④正確
解:①∵BD為△ABC的角平分線,
∴∠ABD=∠CBD,
在△ABD和△EBC中,
,
∴△ABD≌△EBC(SAS),
∴①正確;
②∵BD為△ABC的角平分線,BD=BC,BE=BA,
∴∠BCD=∠BDC=∠BAE=∠BEA,
∵△ABD≌△EBC,
∴∠BCE=∠BDA,
∴∠BCE+∠BCD=∠BDA+∠BDC=180°,
∴②正確;
③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,
∴∠DCE=∠DAE,
∴△ACE為等腰三角形,
∴AE=EC,
∵△ABD≌△EBC,
∴AD=EC,
∴AD=AE=EC,
∵BD為△ABC的角平分線,EF⊥AB,而EC不垂直與BC,
∴EF≠EC,
∴③錯(cuò)誤;
④過(guò)E作EG⊥BC于G點(diǎn),
∵E是BD上的點(diǎn),∴EF=EG,
在Rt△BEG和Rt△BEF中,
,
∴Rt△BEG≌Rt△BEF(HL),
∴BG=BF,
在Rt△CEG和Rt△AFE中,
,
∴Rt△CEG≌Rt△AFE(HL),
∴AF=CG,
∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,
∴④正確.
故答案為:①②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,點(diǎn)D為AB的中點(diǎn)如果點(diǎn)P在線段BC上以v厘米秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng)若點(diǎn)Q的運(yùn)動(dòng)速度為3厘米秒,則當(dāng)△BPD與△CQP全等時(shí),v的值為( )
A. 2.5 B. 3 C. 2.25或3 D. 1或5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將沿直線BC方向平移的位置,G是DE上一點(diǎn),連接AG,過(guò)點(diǎn)A、D作直線MN.
(1)求證:;
(2)若,,判斷AG與DE的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖的數(shù)陣是由77個(gè)偶數(shù)排成:
(1)如圖中任意作一個(gè)平行四邊形框,設(shè)左上角的數(shù)為x,那么其他3個(gè)數(shù)從小到大可分別表示為 .
(2)小紅說(shuō)這4個(gè)數(shù)的和是292,能求出這4個(gè)數(shù)嗎?若存在,請(qǐng)求出這4個(gè)數(shù).不存在說(shuō)明理由.
(3)小明說(shuō)4個(gè)數(shù)的和是420,存在這樣的數(shù)嗎?若存在,請(qǐng)求出這4個(gè)數(shù),不存在說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AC為對(duì)角線,E為AB上一點(diǎn),過(guò)點(diǎn)E作,與AC、DC分別交于點(diǎn)為CG的中點(diǎn),連結(jié)DE、EH、DH、下列結(jié)論: ; ≌; ; 若,則其中結(jié)論正確的有
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
(1)請(qǐng)你根據(jù)圖中A、B兩點(diǎn)的位置,分別寫(xiě)出它們所表示的有理數(shù)
A: ___________ B: _____________ ;
(2)觀察數(shù)軸,與點(diǎn)A的距離為4的點(diǎn)表示的數(shù)是:_____________ ;
(3)若將數(shù)軸折疊,使得A點(diǎn)與-3表示的點(diǎn)重合,則B點(diǎn)與數(shù)_ _表示的點(diǎn)重合;
(4)若數(shù)軸上M、N兩點(diǎn)之間的距離為2014(M在N的左側(cè)),且M、N兩點(diǎn)經(jīng)過(guò)(3)中折疊后互相重合,則M、N兩點(diǎn)表示的數(shù)分別是: M: _______ N: _______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究:有一長(zhǎng)6cm,寬4cm的矩形紙板,現(xiàn)要求以其一組對(duì)邊中點(diǎn)所在直線為軸,旋轉(zhuǎn)180°,得到一個(gè)圓柱,現(xiàn)可按照兩種方案進(jìn)行操作:
方案一:以較長(zhǎng)的一組對(duì)邊中點(diǎn)所在直線為軸旋轉(zhuǎn),如圖①;
方案二:以較短的一組對(duì)邊中點(diǎn)所在直線為軸旋轉(zhuǎn),如圖②.
(1)請(qǐng)通過(guò)計(jì)算說(shuō)明哪種方法構(gòu)造的圓柱體積大;
(2)如果該矩形的長(zhǎng)寬分別是5cm和3cm呢?請(qǐng)通過(guò)計(jì)算說(shuō)明哪種方法構(gòu)造的圓柱體積大;
(3)通過(guò)以上探究,你發(fā)現(xiàn)對(duì)于同一個(gè)矩形(不包括正方形),以其一組對(duì)邊中點(diǎn)所在直線為軸旋轉(zhuǎn)得到一個(gè)圓柱,怎樣操作所得到的圓柱體積大(不必說(shuō)明原因)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AB=3,AD=4,∠ABC=60°,過(guò)BC的中點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,與DC的延長(zhǎng)線相交于點(diǎn)H,則△DEF的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,交BF于點(diǎn)C,BD平分∠ABC,交AE于點(diǎn)D,連接CD.
(1)求證:四邊形ABCD是菱形;
(2)若AB=5,AC=6,求AE,BF之間的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com