精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,已知點A的坐標是(4,0),并且OA=OC=4OB,動點P在過A,BC三點的拋物線上.

1)求拋物線的解析式;

2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;

3)過動點PPE垂直于y軸于點E,交直線AC于點D,過點Dx軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.

【答案】1B(-1,0);C0,4);;(2P2,6);(3)點

【解析】

試題(1)根據A的坐標,即可求得OA的長,則B、C的坐標即可求得,然后利用待定系數法即可求得函數的解析式;

2)分點A為直角頂點時,和C的直角頂點兩種情況討論,根據OA=OC,即可列方程求解;

3)據垂線段最短,可得當OD⊥AC時,OD最短,即EF最短,根據等腰三角形的性質,DAC的中點,則DF=OC,即可求得P的縱坐標,代入二次函數的解析式,即可求得橫坐標,得到P的坐標.

解:(1)由A4,0),可知OA=4,

∵OA=OC=4OB,

∴OA=OC=4,OB=1,

∴C0,4),B﹣1,0).

設拋物線的解析式是y=ax2+bx+c,

,

解得:,

則拋物線的解析式是:y=﹣x2+3x+4

2)存在.

第一種情況,當以C為直角頂點時,過點CCP1⊥AC,交拋物線于點P1.過點P1y軸的垂線,垂足是M

∵∠ACP1=90°,

∴∠MCP1+∠ACO=90°

∵∠ACO+∠OAC=90°

∴∠MCP1=∠OAC

∵OA=OC,

∴∠MCP1=∠OAC=45°

∴∠MCP1=∠MP1C,

∴MC=MP1,

Pm,﹣m2+3m+4),

m=﹣m2+3m+4﹣4,

解得:m1=0(舍去),m2=2

∴﹣m2+3m+4=6,

P2,6).

第二種情況,當點A為直角頂點時:過AAP2,交拋物線于點P2,過點P2y軸的垂線,垂足是N,AP2y軸于點F

∴P2N∥x軸,

∠CAO=45°,

∴∠OAP2=45°

∴∠FP2N=45°,AO=OF

∴P2N=NF,

P2n﹣n2+3n+4),

n=﹣n2+3n+4+4

解得:n1=﹣2,n2=4(舍去),

∴﹣n2+3n+4=﹣6

P2的坐標是(﹣2,﹣6).

綜上所述,P的坐標是(2,6)或(﹣2,﹣6);

3)連接OD,由題意可知,四邊形OFDE是矩形,則OD=EF

根據垂線段最短,可得當OD⊥AC時,OD最短,即EF最短.

由(1)可知,在直角△AOC中,OC=OA=4,

根據等腰三角形的性質,DAC的中點.

∵DF∥OC,

∴DF=OC=2

P的縱坐標是2

﹣x2+3x+4=2,

解得:x=,

EF最短時,點P的坐標是:(2)或(,2).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,點A、BC的坐標分別為、,點E的外接圓上一點,BE交線段AC于點D,若,則點D的坐標為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校舉行全員賽課比賽,八年級3位數學老師分別記為A,B,C,(其中A是女老師,B,C是男老師)被安排在星期二下午三節(jié)上,他們通過抽簽決定上課順序。

1)女老師A不希望上第一節(jié)課,卻偏偏抽到上第一節(jié)課的概率是

2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結果,并求女老師A比男老師B先上課的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們知道不等式的兩邊加(或減)同一個數(或式子),不等號的方向不變.不等式組是否也具有類似的性質呢?請解答下列問題.

1)完成下列填空:

已知

用“<”或“>”填空

5+2_____3+1

31_____52

12_____4+1

2)一般地,如果那么a+c_____b+d(用“<”或“>”填空).請你說明上述性質的正確性.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形紙片中,對角線、交于點,折疊正方形紙片,使落在上,點恰好與上的點重合.展開后,折痕分別交、于點、.連接.下列結論:①;②;③;④四邊形是菱形;⑤

其中正確結論的序號是(  。

A. ①②③④⑤B. ①②③④C. ①③④⑤D. ①④⑤

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小方與小輝在玩軍棋游戲,他們定義了一種新的規(guī)則,用軍棋中的工兵、連長、地雷比較大小,共有6個棋子,分別為1工兵,2連長,3地雷游戲規(guī)則如下:①游戲時,將棋反面朝上,兩人隨機各摸一個棋子進行比賽,先摸者摸出的棋不放回;②工兵地雷,地雷連長,連長工兵;③相同棋子不分勝負.

1)若小方先摸,則小方摸到排長的事件是 ;若小方先摸到了連長,小輝在剩余的5個棋子中隨機摸一個,則這一輪中小方勝小輝的概率為

2)如果先拿走一個連長,在剩余的5個棋子中小方先摸一個棋子,然后小輝在剩余的4個棋子中隨機摸一個,求這一輪中小方獲勝的概率

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC中,點A到直線BC的距離為dABACd,以A為圓心,AC為半徑畫圓弧,圓弧交直線BC于點D,過點DDEAC交直線AB于點E,若BC=4,DE=1,∠EDA=ACD,則AD=__________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=2x與反比例函數y=(x>0)的圖象交于點A(4,n),ABx軸,垂足為B.

(1)求k的值;

(2)點CAB上,若OC=AC,求AC的長;

(3)點Dx軸正半軸上一點,在(2)的條件下,若SOCD=SACD,求點D的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某廠家以兩種原料,利用不同的工藝手法生產出了甲、乙、丙三種袋裝產品,其中,甲產品每袋含千克原料、千克原料;乙產品每袋含千克原料、千克原料;丙產品每袋含有千克原料、千克原料.若丙產品每袋售價元,則利潤率為.某節(jié)慶日,該電商進行促銷活動,將甲、乙、丙各一袋合裝成禮品盒,每購買一個禮品盒可免費贈送一袋乙產品,這樣即可實現利潤率為,則禮盒售價為_____元.

查看答案和解析>>

同步練習冊答案